EconPapers    
Economics at your fingertips  
 

A ZigBee-Based Location-Aware Fall Detection System for Improving Elderly Telecare

Chih-Ning Huang and Chia-Tai Chan
Additional contact information
Chih-Ning Huang: Institute of Biomedical Engineering, National Yang-Ming University, No.155, Section 2, Linong Street, Taipei, 112 Taiwan
Chia-Tai Chan: Institute of Biomedical Engineering, National Yang-Ming University, No.155, Section 2, Linong Street, Taipei, 112 Taiwan

IJERPH, 2014, vol. 11, issue 4, 1-16

Abstract: Falls are the primary cause of accidents among the elderly and frequently cause fatal and non-fatal injuries associated with a large amount of medical costs. Fall detection using wearable wireless sensor nodes has the potential of improving elderly telecare. This investigation proposes a ZigBee-based location-aware fall detection system for elderly telecare that provides an unobstructed communication between the elderly and caregivers when falls happen. The system is based on ZigBee-based sensor networks, and the sensor node consists of a motherboard with a tri-axial accelerometer and a ZigBee module. A wireless sensor node worn on the waist continuously detects fall events and starts an indoor positioning engine as soon as a fall happens. In the fall detection scheme, this study proposes a three-phase threshold-based fall detection algorithm to detect critical and normal falls. The fall alarm can be canceled by pressing and holding the emergency fall button only when a normal fall is detected. On the other hand, there are three phases in the indoor positioning engine: path loss survey phase, Received Signal Strength Indicator (RSSI) collection phase and location calculation phase. Finally, the location of the faller will be calculated by a k -nearest neighbor algorithm with weighted RSSI. The experimental results demonstrate that the fall detection algorithm achieves 95.63% sensitivity, 73.5% specificity, 88.62% accuracy and 88.6% precision. Furthermore, the average error distance for indoor positioning is 1.15 ± 0.54 m. The proposed system successfully delivers critical information to remote telecare providers who can then immediately help a fallen person.

Keywords: fall detection; accelerometer; indoor positioning; ZigBee; pervasive healthcare (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1660-4601/11/4/4233/pdf (application/pdf)
https://www.mdpi.com/1660-4601/11/4/4233/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:11:y:2014:i:4:p:4233-4248:d:35154

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:11:y:2014:i:4:p:4233-4248:d:35154