EconPapers    
Economics at your fingertips  
 

Deep Ensemble Learning Approaches in Healthcare to Enhance the Prediction and Diagnosing Performance: The Workflows, Deployments, and Surveys on the Statistical, Image-Based, and Sequential Datasets

Duc-Khanh Nguyen, Chung-Hsien Lan and Chien-Lung Chan
Additional contact information
Duc-Khanh Nguyen: Department of Information Management, Yuan Ze University, Taoyuan 32003, Taiwan
Chung-Hsien Lan: Department of Computer Science, Nanya Institute of Technology, Taoyuan 32003, Taiwan
Chien-Lung Chan: Department of Information Management, Yuan Ze University, Taoyuan 32003, Taiwan

IJERPH, 2021, vol. 18, issue 20, 1-19

Abstract: With the development of information and technology, especially with the boom in big data, healthcare support systems are becoming much better. Patient data can be collected, retrieved, and stored in real time. These data are valuable and meaningful for monitoring, diagnosing, and further applications in data analysis and decision-making. Essentially, the data can be divided into three types, namely, statistical, image-based, and sequential data. Each type has a different method of retrieval, processing, and deployment. Additionally, the application of machine learning (ML) and deep learning (DL) in healthcare support systems is growing more rapidly than ever. Numerous high-performance architectures are proposed to optimize decision-making. As reliability and stability are the most important factors in the healthcare support system, enhancing the predicted performance and maintaining the stability of the model are always the top priority. The main idea of our study comes from ensemble techniques. Numerous studies and data science competitions show that by combining several weak models into one, ensemble models can attain outstanding performance and reliability. We propose three deep ensemble learning (DEL) approaches, each with stable and reliable performance, that are workable on the above-mentioned data types. These are deep-stacked generalization ensemble learning, gradient deep learning boosting, and deep aggregation learning. The experiment results show that our proposed approaches achieve more vigorous and reliable performance than traditional ML and DL techniques on statistical, image-based, and sequential benchmark datasets. In particular, on the Heart Disease UCI dataset, representing the statistical type, the gradient deep learning boosting approach dominates the others with accuracy, recall, F1-score, Matthews correlation coefficient, and area under the curve values of 0.87, 0.81, 0.83, 0.73, and 0.91, respectively. On the X-ray dataset, representing the image-based type, the deep aggregation learning approach shows the highest performance with values of 0.91, 0.97, 0.93, 0.80, and 0.94, respectively. On the Depresjon dataset, representing the sequence type, the deep-stacked generalization ensemble learning approach outperforms the others with values of 0.91, 0.84, 0.86, 0.8, and 0.94, respectively. Overall, we conclude that applying DL models using our proposed approaches is a promising method for the healthcare support system to enhance prediction and diagnosis performance. Furthermore, our study reveals that these approaches are flexible and easy to apply to achieve optimal performance.

Keywords: healthcare; prediction; deep learning; deep ensemble learning approaches (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/20/10811/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/20/10811/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:20:p:10811-:d:656537

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:20:p:10811-:d:656537