Kelly Criterion for Optimal Credit Allocation
Son Tran and
Peter Verhoeven
Additional contact information
Son Tran: Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
Peter Verhoeven: Faculty of Law and Business, Queensland University of Technology, Brisbane, QLD 4000, Australia
JRFM, 2021, vol. 14, issue 9, 1-16
Abstract:
The purpose of this study is to address the critical issue of optimal credit allocation. Predicting a borrower’s probability of default is a key requirement of any credit allocation system but turning it into labeled classes leads to problems in performance measurement. In this paper the connection between the probability of default and optimal credit allocation is established through a conceptual construct called the Kelly criterion. Conflicting performance measures in dichotomous classification are replaced with coherent criteria for judging the performance of credit allocation decisions. Extensive testing on peer-to-peer lending data shows that the Kelly strategy enables consistent outperformance and efficiency in processing information relative to alternative credit allocation approaches.
Keywords: credit allocation; Kelly criterion (search for similar items in EconPapers)
JEL-codes: C E F2 F3 G (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1911-8074/14/9/434/pdf (application/pdf)
https://www.mdpi.com/1911-8074/14/9/434/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jjrfmx:v:14:y:2021:i:9:p:434-:d:631915
Access Statistics for this article
JRFM is currently edited by Ms. Chelthy Cheng
More articles in JRFM from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().