EconPapers    
Economics at your fingertips  
 

Thermal Footprint of the Urbanization Process: Analyzing the Heat Effects of the Urbanization Index (UI) on the Local Climate Zone (LCZ) and Land Surface Temperature (LST) over Two Decades in Seville

Nadia Falah, Jaime Solis-Guzman () and Nahid Falah
Additional contact information
Nadia Falah: ArDiTec Research Group, Department of Architectural Constructions II, Higher Technical School of Building Engineering, Universidad de Sevilla, Av. Reina Mercedes 4-a, 41012 Seville, Spain
Jaime Solis-Guzman: ArDiTec Research Group, Department of Architectural Constructions II, Higher Technical School of Building Engineering, Universidad de Sevilla, Av. Reina Mercedes 4-a, 41012 Seville, Spain
Nahid Falah: Landkreis Harburg, Schloßplatz 6, 21423 Winsen (Luhe), Germany

Land, 2024, vol. 13, issue 11, 1-27

Abstract: Urbanization is a multifaceted process characterized by changes in urban areas through various means, such as sprawl, ribbon development, or infill and compact growth. This phenomenon changes the pattern of the local climate zone (LCZ) and significantly affects the climate, vegetation dynamics, energy consumption, water resources, and public health. This study aims to discern the impacts of changes in urban growth on the LCZ and land surface temperature (LST) over a two-decade period. A comprehensive methodology that integrates statistical analysis, data visualization, machine learning, and advanced techniques, such as remote sensing technology and geospatial analysis systems, is employed. ENVI, GEE, and GIS tools are utilized to collect, process, and monitor satellite data and imagery of temporal and spatial variations in intensive or diffuse urbanization processes from 2003 to 2023 to analyze and simulate land use and land cover (LULC) changes, urbanization index (UI), LCZ patterns, and LST changes over the years and to make overlapping maps of changes to recognize the relation between LULC, LCZ, and LST. This study focuses on Seville’s urban area, which has experienced rapid urbanization and a significant increase in average temperature during the last few decades. The findings of this study will provide actionable recommendations into the interplay between urban growth and climate and highlight the pivotal role of urban growth in shaping resilience and vulnerable areas based on microclimate changes. Urban planners can leverage these insights to predict alternatives for the future development of urban areas and define practical climate mitigation strategies.

Keywords: urbanization process; land use and land cover (LULC); local climate zone (LCZ); climate change; land surface temperature (LST); remote sensing (RS); Google earth engine (GEE) (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/13/11/1877/pdf (application/pdf)
https://www.mdpi.com/2073-445X/13/11/1877/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:13:y:2024:i:11:p:1877-:d:1517910

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1877-:d:1517910