EconPapers    
Economics at your fingertips  
 

Comparative Analysis of Machine-Learning Models for Soil Moisture Estimation Using High-Resolution Remote-Sensing Data

Ming Li and Yueguan Yan ()
Additional contact information
Ming Li: College of Geoscience and Surveying Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
Yueguan Yan: College of Geoscience and Surveying Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China

Land, 2024, vol. 13, issue 8, 1-24

Abstract: Soil moisture is an important component of the hydrologic cycle and ecosystem functioning, and it has a significant impact on agricultural production, climate change and natural disasters. Despite the availability of machine-learning techniques for estimating soil moisture from high-resolution remote-sensing imagery, including synthetic aperture radar (SAR) data and optical remote sensing, comprehensive comparative studies of these techniques remain limited. This paper addresses this gap by systematically comparing the performance of four tree-based ensemble-learning models (random forest (RF), extreme gradient boosting (XGBoost), light gradient-boosting machine (LightGBM), and category boosting (CatBoost)) and three deep-learning models (deep neural network (DNN), convolutional neural network (CNN), and gated recurrent unit (GRU)) in terms of soil moisture estimation. Additionally, we introduce and evaluate the effectiveness of four different stacking methods for model fusion, an approach that is relatively novel in this context. Moreover, Sentinel-1 C-band dual-polarization SAR and Sentinel-2 multispectral data, as well as NASADEM and geographical code and temporal code features, are used as input variables to retrieve the soil moisture in the ShanDian River Basin in China. Our findings reveal that the tree-based ensemble-learning models outperform the deep-learning models, with LightGBM being the best individual model, while the stacking approach can further enhance the accuracy and robustness of soil moisture estimation. Moreover, the stacking all boosting classes ensemble-learning model (SABM), which integrates only boosting-type models, demonstrates superior accuracy and robustness in soil moisture estimation. The SHAP value analysis reveals that ensemble learning can utilize more complex features than deep learning. This study provides an effective method for retrieving soil moisture using machine-learning and high-resolution remote-sensing data, demonstrating the application value of SAR data and high-resolution optical remote-sensing data in soil moisture monitoring.

Keywords: traditional machine learning; deep learning; stacking; soil moisture; Sentinel-1; Sentinel-2 (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/13/8/1331/pdf (application/pdf)
https://www.mdpi.com/2073-445X/13/8/1331/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:13:y:2024:i:8:p:1331-:d:1461770

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1331-:d:1461770