Spatial–Temporal Evolution of Ecological Network Structure During 1967–2021 in Yongding River Floodplain
Junyi Su,
Minghao Wu and
Zhicheng Liu ()
Additional contact information
Junyi Su: School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
Minghao Wu: School of Architecture & Urban Planning, Shenzhen University, Shenzhen 518060, China
Zhicheng Liu: School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
Land, 2025, vol. 14, issue 5, 1-23
Abstract:
Constructing a rational ecological network is crucial for balancing regional development with environmental protection. However, existing research typically emphasizes the analysis of overall patterns, lacking an in-depth exploration of the dynamic changes in key elements and the interactions between different components. Using the Yongding River floodplain as a case study, this study applied morphological spatial pattern analysis, landscape connectivity metrics, and biodiversity assessments to identify core ecological source areas. Circuit theory was used to delineate ecological corridors and analyze network evolution across four key years, while graph theory facilitated an in-depth analysis of network structural characteristics. Furthermore, key areas for ecological restoration were identified within the floodplain. We found that the number of ecological source patches in the study area has remained relatively stable, though their total area has shown a fluctuating decline, accounting for approximately 10% of the floodplain. Additionally, ecological corridors have decreased significantly from 1967 to 2021, with a marked reduction in major corridors, leading to increased resistance to material and energy flow and a corresponding decline in network connectivity and stability. More importantly, current ecological pinch points are primarily distributed in a bead-like pattern along the Yongding River channel, while ecological barriers are concentrated in the northern and eastern floodplain, often at intersections of dense road networks and ecological corridors. These critical areas of fragmentation within the ecological network are prioritized for targeted ecological protection and restoration efforts. Overall, this study advances our understanding of the spatial distribution and composition of key ecological elements within river corridor networks and offers a framework for evaluating these networks through a multidimensional optimization approach for ecological source patches. At the same time, we conducted an in-depth analysis of key fragmentation areas in the Yongding River floodplain, providing valuable guidance for future ecological protection and restoration initiatives in river corridors.
Keywords: river corridor; ecological network evolution; circuit theory; graph theory; ecological restoration (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2073-445X/14/5/930/pdf (application/pdf)
https://www.mdpi.com/2073-445X/14/5/930/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:14:y:2025:i:5:p:930-:d:1641944
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().