Hybrid LSTM–Transformer Architecture with Multi-Scale Feature Fusion for High-Accuracy Gold Futures Price Forecasting
Yali Zhao,
Yingying Guo and
Xuecheng Wang ()
Additional contact information
Yali Zhao: School of Economics and Management, North China University of Technology, Beijing 100114, China
Yingying Guo: School of Economics and Management, North China University of Technology, Beijing 100114, China
Xuecheng Wang: School of Economics and Management, North China University of Technology, Beijing 100114, China
Mathematics, 2025, vol. 13, issue 10, 1-27
Abstract:
Amidst global economic fluctuations and escalating geopolitical risks, gold futures, as a pivotal safe-haven asset, demonstrate price dynamics that directly impact investor decision-making and risk mitigation effectiveness. Traditional forecasting models face significant limitations in capturing long-term trends, addressing abrupt volatility, and mitigating multi-source noise within complex market environments characterized by nonlinear interactions and extreme events. Current research predominantly focuses on single-model approaches (e.g., ARIMA or standalone neural networks), inadequately addressing the synergistic effects of multimodal market signals (e.g., cross-market index linkages, exchange rate fluctuations, and policy shifts) and lacking the systematic validation of model robustness under extreme events. Furthermore, feature selection often relies on empirical assumptions, failing to uncover non-explicit correlations between market factors and gold futures prices. A review of the global literature reveals three critical gaps: (1) the insufficient integration of temporal dependency and global attention mechanisms, leading to imbalanced predictions of long-term trends and short-term volatility; (2) the neglect of dynamic coupling effects among cross-market risk factors, such as energy ETF-metal market spillovers; and (3) the absence of hybrid architectures tailored for high-frequency noise environments, limiting predictive utility for decision support. This study proposes a three-stage LSTM–Transformer–XGBoost fusion framework. Firstly, XGBoost-based feature importance ranking identifies six key drivers from thirty-six candidate indicators: the NASDAQ Index, S&P 500 closing price, silver futures, USD/CNY exchange rate, China’s 1-year Treasury yield, and Guotai Zhongzheng Coal ETF. Second, a dual-channel deep learning architecture integrates LSTM for long-term temporal memory and Transformer with multi-head self-attention to decode implicit relationships in unstructured signals (e.g., market sentiment and climate policies). Third, rolling-window forecasting is conducted using daily gold futures prices from the Shanghai Futures Exchange (2015–2025). Key innovations include the following: (1) a bidirectional LSTM–Transformer interaction architecture employing cross-attention mechanisms to dynamically couple global market context with local temporal features, surpassing traditional linear combinations; (2) a Dynamic Hierarchical Partition Framework (DHPF) that stratifies data into four dimensions (price trends, volatility, external correlations, and event shocks) to address multi-driver complexity; (3) a dual-loop adaptive mechanism enabling endogenous parameter updates and exogenous environmental perception to minimize prediction error volatility. This research proposes innovative cross-modal fusion frameworks for gold futures forecasting, providing financial institutions with robust quantitative tools to enhance asset allocation optimization and strengthen risk hedging strategies. It also provides an interpretable hybrid framework for derivative pricing intelligence. Future applications could leverage high-frequency data sharing and cross-market risk contagion models to enhance China’s influence in global gold pricing governance.
Keywords: LSTM–transformer hybrid model; XGBoost machine learning; deep learning framework; multi-head self-attention architecture; gold futures price forecasting (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/10/1551/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/10/1551/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:10:p:1551-:d:1651872
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().