EconPapers    
Economics at your fingertips  
 

Quantum Surface Topological Code for Bell State Stabilization in Superconducting Physical Qubit Systems

Jordi Fabián González-Contreras (), Erik Zamora, Jesús Yaljá Montiel-Pérez (), Juan Humberto Sossa-Azuela, Elsa Rubio-Espino and Víctor Hugo Ponce-Ponce
Additional contact information
Jordi Fabián González-Contreras: Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Batiz, Gustavo A. Madero, Mexico City 07738, Mexico
Erik Zamora: Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Batiz, Gustavo A. Madero, Mexico City 07738, Mexico
Jesús Yaljá Montiel-Pérez: Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Batiz, Gustavo A. Madero, Mexico City 07738, Mexico
Juan Humberto Sossa-Azuela: Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Batiz, Gustavo A. Madero, Mexico City 07738, Mexico
Elsa Rubio-Espino: Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Batiz, Gustavo A. Madero, Mexico City 07738, Mexico
Víctor Hugo Ponce-Ponce: Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Batiz, Gustavo A. Madero, Mexico City 07738, Mexico

Mathematics, 2025, vol. 13, issue 13, 1-12

Abstract: Stabilizing quantum states in physical qubits quantum computers has been a widely explored topic in the Noisy Intermediate-Scale Quantum era. However, much of this work has focused on simulation rather than practical implementation. In this study, an experimental advancement in Bell state stabilization is presented, which utilizes surface codes for quantum error correction across three quantum computers: ibm_fez, ibm_torino, and ibm_brisbane. Our findings indicate that error correction produces an improvement of approximately 3% in accuracy for 127-qubit systems while demonstrating a more significant enhancement of around 20% for 156-qubit systems in stabilizing the Bell state with fidelity up to 0.6 in all the experiments. This paper outlines the methodology for implementing this strategy in other applications, offering a pathway to improve results ( ≈ 20 % ) when experimenting with superconducting quantum computers.

Keywords: quantum state stabilization; surface codes; bell state; IBM quantum devices (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/13/2041/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/13/2041/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:13:p:2041-:d:1683316

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-21
Handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2041-:d:1683316