EconPapers    
Economics at your fingertips  
 

Mathematical Modelling and Optimization Methods in Geomechanically Informed Blast Design: A Systematic Literature Review

Fabian Leon (), Luis Rojas, Alvaro Peña, Paola Moraga, Pedro Robles, Blanca Gana and Jose García ()
Additional contact information
Fabian Leon: Doctorado en Industria Inteligente, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile
Luis Rojas: Doctorado en Industria Inteligente, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile
Alvaro Peña: Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile
Paola Moraga: Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile
Pedro Robles: Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile
Blanca Gana: Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile
Jose García: Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile

Mathematics, 2025, vol. 13, issue 15, 1-34

Abstract: Background: Rock–blast design is a canonical inverse problem that joins elastodynamic partial differential equations (PDEs), fracture mechanics, and stochastic heterogeneity. Objective: Guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, a systematic review of mathematical methods for geomechanically informed blast modelling and optimisation is provided. Methods: A Scopus–Web of Science search (2000–2025) retrieved 2415 records; semantic filtering and expert screening reduced the corpus to 97 studies. Topic modelling with Bidirectional Encoder Representations from Transformers Topic (BERTOPIC) and bibliometrics organised them into (i) finite-element and finite–discrete element simulations, including arbitrary Lagrangian–Eulerian (ALE) formulations; (ii) geomechanics-enhanced empirical laws; and (iii) machine-learning surrogates and multi-objective optimisers. Results: High-fidelity simulations delimit blast-induced damage with ≤0.2 m mean absolute error; extensions of the Kuznetsov–Ram equation cut median-size mean absolute percentage error (MAPE) from 27% to 15%; Gaussian-process and ensemble learners reach a coefficient of determination ( R 2 > 0.95 ) while providing closed-form uncertainty; Pareto optimisers lower peak particle velocity (PPV) by up to 48% without productivity loss. Synthesis: Four themes emerge—surrogate-assisted PDE-constrained optimisation, probabilistic domain adaptation, Bayesian model fusion for digital-twin updating, and entropy-based energy metrics. Conclusions: Persisting challenges in scalable uncertainty quantification, coupled discrete–continuous fracture solvers, and rigorous fusion of physics-informed and data-driven models position blast design as a fertile test bed for advances in applied mathematics, numerical analysis, and machine-learning theory.

Keywords: rock blasting; geomechanical parameters; blast-design indices; fragmentation modelling; Kuz–Ram model; machine learning; numerical simulation; energy-based design (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/15/2456/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/15/2456/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:15:p:2456-:d:1713434

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-07-31
Handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2456-:d:1713434