A Random Riemann–Liouville Integral Operator
Jorge Sanchez-Ortiz,
Omar U. Lopez-Cresencio (),
Martin P. Arciga-Alejandre and
Francisco J. Ariza-Hernandez ()
Additional contact information
Jorge Sanchez-Ortiz: Facultad de Matemáticas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Cd. Universitaria, Chilpancingo P.O. Box 39087, Guerrero, Mexico
Omar U. Lopez-Cresencio: Facultad de Matemáticas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Cd. Universitaria, Chilpancingo P.O. Box 39087, Guerrero, Mexico
Martin P. Arciga-Alejandre: Facultad de Matemáticas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Cd. Universitaria, Chilpancingo P.O. Box 39087, Guerrero, Mexico
Francisco J. Ariza-Hernandez: Facultad de Matemáticas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Cd. Universitaria, Chilpancingo P.O. Box 39087, Guerrero, Mexico
Mathematics, 2025, vol. 13, issue 15, 1-11
Abstract:
In this work, we propose a definition of the random fractional Riemann–Liouville integral operator, where the order of integration is given by a random variable. Within the framework of random operator theory, we study this integral with a random kernel and establish results on the measurability of the random Riemann–Liouville integral operator, which we show to be a random endomorphism of L 1 [ a , b ] . Additionally, we derive the semigroup property for these operators as a probabilistic version of the constant-order Riemann–Liouville integral. To illustrate the behavior of this operator, we present two examples involving different random variables acting on specific functions. The sample trajectories and estimated probability density functions of the resulting random integrals are then explored via Monte Carlo simulation.
Keywords: generalized random variable; random operator; fractional operator (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/15/2524/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/15/2524/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:15:p:2524-:d:1718444
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().