EconPapers    
Economics at your fingertips  
 

Elastic Contact Between a Transversely, Uniformly Loaded Circular Membrane and a Spring-Reset Rigid Flat Circular Plate: An Improved Closed-Form Solution

Xiao-Ting He, Jing-Miao Yin, Jun-Song Ran, Jun-Yi Sun and Ying Guo ()
Additional contact information
Xiao-Ting He: School of Civil Engineering, Chongqing University, Chongqing 400045, China
Jing-Miao Yin: School of Civil Engineering, Chongqing University, Chongqing 400045, China
Jun-Song Ran: School of Civil Engineering, Chongqing University, Chongqing 400045, China
Jun-Yi Sun: School of Civil Engineering, Chongqing University, Chongqing 400045, China
Ying Guo: School of Civil Engineering, Chongqing University, Chongqing 400045, China

Mathematics, 2025, vol. 13, issue 16, 1-40

Abstract: The closed-form solution of the problem regarding elastic contact between a transversely, uniformly loaded circular membrane and a spring-reset rigid flat circular plate has potential application value in sensor developments or bending-free shell designs, but it still needs to be further improved. In this paper, on the basis of existing studies, the plate/membrane elastic contact problem is reformulated by improving the system of differential equations governing the elastic behavior of a large deflection of a circular membrane. Specifically, the radial geometric equation used in the existing studies is improved by giving up the assumption of a small rotation angle for the membrane, and an improved closed-form solution to the plate/membrane elastic contact problem is presented. The convergence and validity of the improved closed-form solution are analyzed, and the difference between the closed-form solutions before and after improvement is graphically shown. In addition, the effect of changing some important geometric and physical parameters on the improved closed-form solution is investigated.

Keywords: circular membrane; rigid flat plate; transversely uniform loading; elastic contact problem; closed-form solution (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/16/2626/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/16/2626/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:16:p:2626-:d:1725631

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-08-20
Handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2626-:d:1725631