EconPapers    
Economics at your fingertips  
 

Disturbance-Resilient Two-Area LFC via RBBMO-Optimized Hybrid Fuzzy–Fractional with Auxiliary PI(1+DD) Controller Considering RES/ESS Integration and EVs Support

Saleh A. Alnefaie (), Abdulaziz Alkuhayli and Abdullah M. Al-Shaalan
Additional contact information
Saleh A. Alnefaie: Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
Abdulaziz Alkuhayli: Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
Abdullah M. Al-Shaalan: Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

Mathematics, 2025, vol. 13, issue 23, 1-52

Abstract: This study examines dual-area load–frequency control (LFC) in the context of significant renewable energy integration, energy storage systems (ESSs), and collective electric vehicle (EV) involvement. We propose a RBBMO-FO-FuzzyPID+PI(1+DD) hybrid controller in which fractional-order fuzzy regulation shapes the ACE, while an auxiliary PI(1+DD) path adds damping without steady-state penalty. Across ideal linear plants, 3% governor-rate constraints (GRC), and stressed conditions that include contract violations in Area-2, renewable power variations, and partial EV State of Charge (SoC 50–70%), EV participation yields systematic gains for all controller families, and the magnitude depends on the control architecture. Baseline methods improve by 15–25% with EVs, whereas advanced designs—especially the proposed controller—benefit by 25–45%, revealing a clear synergy between controller intelligence and EV flexibility. With EV support, the proposed controller limits frequency overshoot to 0.055 Hz (a 20–55% reduction versus peers), caps the nadir at −0.065 Hz (15–41% better undershoot), and attains 3.5–4.5 s settling (25–61% faster than competitors), while holding tie-line deviations within ±0.02 Hz. Optimization studies confirm the algorithmic advantage: RBBMO achieves 30% lower cost than BBOA and converges 25% faster; EV integration further reduces cost by 15% and speeds convergence by 12%. A strong correlation between optimization cost and closed-loop performance (r 2 ≈ 0.95) validates the tuning strategy. Collectively, the results establish the proposed hybrid controller with EV participation as a new benchmark for robust, system-wide frequency regulation in renewable-rich multi-area grids.

Keywords: red-billed blue magpie optimizer (RBBMO); LFC; renewable penetration; electric-vehicle and power system (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/23/3775/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/23/3775/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:23:p:3775-:d:1801943

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-11-27
Handle: RePEc:gam:jmathe:v:13:y:2025:i:23:p:3775-:d:1801943