EconPapers    
Economics at your fingertips  
 

Prediction of Eddy Current Losses in Cooling Tubes of Direct Cooled Windings in Electric Machines

Mohamed Nabil Fathy Ibrahim and Peter Sergeant
Additional contact information
Mohamed Nabil Fathy Ibrahim: Department of Electrical Energy, Metals, Mechanical Constructions and Systems, Ghent University, 9000 Ghent, Belgium
Peter Sergeant: Department of Electrical Energy, Metals, Mechanical Constructions and Systems, Ghent University, 9000 Ghent, Belgium

Mathematics, 2019, vol. 7, issue 11, 1-12

Abstract: The direct coil cooling method is one of the existing cooling techniques for electric machines with concentrated windings, in which cooling tubes of conductive material are inserted between the windings. In such cases, eddy current losses are induced in those cooling tubes because of the time variant magnetic field. To compute the cooling tubes losses, either a transient finite element simulation (mostly based on commercial software), or a full analytical method, which is more complex to be constructed, is required. Instead, this paper proposes a simple and an accurate combined semi-analytical-finite element method to calculate the losses of electric machines having cooling tubes. The 2D magnetostatic solution of the magnetic field is obtained e.g., using the free package “FEMM”. Then, the eddy current losses in the tubes are computed using simple analytical equations. In addition, the iron core losses could be obtained. In order to validate the proposed method, two cases are investigated. In Case 1, a six-toothed stator of a switched reluctance machine (SRM), without rotor, is employed in which six cooling tubes are used while in Case 2 a complete rotating SRM is studied. The proposed method is validated by a 2D transient simulation in the commercial software “ANSYS Maxwell” and also by experimental measurements. Evidently, the proposed method is simple and fast to be constructed and it is almost free of cost.

Keywords: analytical models; cooling tubes; electric machines; magnetic losses; numerical models; finite element method; switched reluctance machines (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/7/11/1096/pdf (application/pdf)
https://www.mdpi.com/2227-7390/7/11/1096/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:7:y:2019:i:11:p:1096-:d:286455

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1096-:d:286455