EconPapers    
Economics at your fingertips  
 

Soft Open Bases and a Novel Construction of Soft Topologies from Bases for Topologies

José Alcantud ()

Mathematics, 2020, vol. 8, issue 5, 1-12

Abstract: Soft topology studies a structure on the collection of all soft sets on a given set of alternatives (the relevant attributes being fixed). It is directly inspired by the axioms of a topological space. This paper contributes to the theoretical bases of soft topology in various ways. We extend a general construction of soft topologies from topologies on the set of alternatives in two different directions. An extensive discussion with criteria about what a soft counterpart of “topological separability” should satisfy is also given. The interactions of the properties that arise with separability, and of second-countability and its soft counterpart, are studied under the general mechanisms that generate soft topological spaces. The first non-trivial examples of soft second-countable soft topological spaces are produced as a consequence.

Keywords: soft open base; soft topology; topology; separability; second countability axiom (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/5/672/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/5/672/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:5:p:672-:d:352207

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:672-:d:352207