Multivariable Analysis of Transport Network Seismic Performance: Mexico City
Azucena Román- de la Sancha and
Rodolfo Silva
Additional contact information
Azucena Román- de la Sancha: Engineering Graduate Program, National Autonomous University of Mexico, Mexico City 04510, Mexico
Rodolfo Silva: Institute of Engineering, National Autonomous University of Mexico, Mexico City 04510, Mexico
Sustainability, 2020, vol. 12, issue 22, 1-40
Abstract:
In densely populated urban areas, predicting the post-earthquake performance of a transport network is a particularly challenging task that requires the integration of modeled structural seismic response, damage scenarios, and resulting traffic behavior. Previous approaches assessing the vulnerability and performance of networks after earthquakes have not succeeded in capturing and estimating the interdependencies between seismic risk parameters and key traffic behavior variables. This paper presents a methodology, based on data analysis and optimization, where the dynamic traffic modeling and probabilistic seismic hazard assessment are coupled, to link and characterize key network performance variables after extreme earthquakes and establish a multivariable seismic performance measure. The methodology is used to study the transport network in the southern part of Mexico City for a set of scenarios. The seismic environment is established through uniform hazard spectra derived for firm soil. Damage to structures is estimated considering site response and using fragility functions. Dynamic traffic modeling is developed to simulate damage-induced road closures and resulting in traffic variations. Post-earthquake network performance is evaluated through data envelopment analyses, obtaining sets of seismic performance boundaries, and seismic performance maps. The methodology offers a quantitative tool with applications in the planning of urban areas that are sustainable and seismic resilient.
Keywords: urban transport vulnerability; seismic vulnerability; data envelopment analysis; post-earthquake performance (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2071-1050/12/22/9726/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/22/9726/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:22:p:9726-:d:448930
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().