EconPapers    
Economics at your fingertips  
 

A Concurrence Optimization Model for Low-Carbon Product Family Design and the Procurement Plan of Components under Uncertainty

Qi Wang, Peipei Qi and Shipei Li
Additional contact information
Qi Wang: School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China
Peipei Qi: College of Wealth Management, Ningbo University of Finance & Economics, Ningbo 315175, China
Shipei Li: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Sustainability, 2021, vol. 13, issue 19, 1-22

Abstract: With the increase in pollution and people’s awareness of the environment, reducing greenhouse gas (GHG) emissions from products has attracted more and more attention. Companies and researchers are seeking appropriate methods to reduce the GHG emissions of products. Currently, product family design is widely used for meeting the diverse needs of customers. In order to reduce the GHG emission of products, some methods for low-carbon product family design have been presented in recent years. However, in the existing research, the related GHG emission data of a product family are given as crisp values, which cannot assess GHG emissions accurately. In addition, the procurement planning of components has not been fully concerned, and the supplier selection has only been considered. To this end, in this study, a concurrence optimization model was developed for the low-carbon product family design and the procurement plan of components under uncertainty. In the model, the relevant GHG emissions were considered as the uncertain number rather than the crisp value, and the uncertain GHG emissions model of the product family was established. Meanwhile, the order allocation of the supplier was considered as the decision variable in the model. To solve the uncertain optimization problem, a genetic algorithm was developed. Finally, a case study was performed to illustrate the effectiveness of the proposed approach. The results showed that the proposed model can help decision-makers to simultaneously determine the configuration of product variants, the procurement strategy of components, and the price strategies of product variants based on the objective of maximizing profit and minimizing GHG emission under uncertainty. Moreover, the concurrent optimization of low-carbon product family design and order allocation can bring the company greater profit and lower GHG emissions than just considering supplier selection in low-carbon product family design.

Keywords: low-carbon design; product family design; green manufacturing; mass customization (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/19/10764/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/19/10764/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:19:p:10764-:d:644999

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10764-:d:644999