Experimental Study of the Fatigue Performance of the Bonding Surfaces and Load-Bearing Capacity of a Large-Scale Severely Damaged Hollow Slab Strengthened by CFRP
Hao Hu,
Chuan-Zhi Dong,
Jiji Wang and
Jiaqi Chen
Additional contact information
Hao Hu: Zhejiang Provincial Key Lab for Detection and Maintenance Technology of Road and Bridge, Hangzhou 310023, China
Chuan-Zhi Dong: Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA
Jiji Wang: Zhejiang Provincial Key Lab for Detection and Maintenance Technology of Road and Bridge, Hangzhou 310023, China
Jiaqi Chen: Zhejiang Provincial Key Lab for Detection and Maintenance Technology of Road and Bridge, Hangzhou 310023, China
Sustainability, 2021, vol. 13, issue 21, 1-22
Abstract:
In recent years, carbon fiber reinforced polymer (CFRP) has been widely used in bridge repair, retrofitting, rehabilitation and strengthening to improve the bearing capacity. Although many studies have been conducted to explore the strengthening efficiencies of CFRP, the test specimens were small and the results were difficult to apply to full-scale bridges. Investigations into the strengthening effects of CFRP on real life structures rely on field load tests (without damaging the structures), making it difficult to understand actual improvements in load carrying capacity and strengthening effect. Moreover, there have been few experimental studies on the fatigue performances of CFRP-strengthened structures, especially on the large-scale structures with real wheel moving loads. In this study, the feasibility and efficiency of CFRP strengthening and repair was investigated on a large-scale, prestressed concrete hollow slab decommissioned from a real-life concrete bridge. The hollow slab was first put through a destructive test to test the ultimate load-bearing capacity. Then, CFRP strips were installed on the surface of the severely damaged slab to repair and strengthen it. Fatigue load test—including the moving load test and single point sinusoidal load—and load-bearing capacity tests were conducted on the CFRP-strengthened hollow slab after the destructive test to evaluate the strengthening performance. This study could help us to understand the actual load-bearing capacities of severe damaged concrete structures strengthened by CFRP, reduce waste, save resources and improve the utilization of our infrastructures.
Keywords: carbon fiber reinforced polymer; hollow slab; bridge repair; fatigue; adhesive failure (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/13/21/12179/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/21/12179/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:21:p:12179-:d:672124
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().