EconPapers    
Economics at your fingertips  
 

A YOLO-Based Target Detection Model for Offshore Unmanned Aerial Vehicle Data

Zhenhua Wang, Xinyue Zhang, Jing Li and Kuifeng Luan
Additional contact information
Zhenhua Wang: College of Information Technology, Shanghai Ocean University, Shanghai 203106, China
Xinyue Zhang: College of Information Technology, Shanghai Ocean University, Shanghai 203106, China
Jing Li: College of Information Technology, Shanghai Ocean University, Shanghai 203106, China
Kuifeng Luan: College of Marine Sciences, Shanghai Ocean University, Shanghai 203106, China

Sustainability, 2021, vol. 13, issue 23, 1-11

Abstract: Target detection in offshore unmanned aerial vehicle data is still a challenge due to the complex characteristics of targets, such as multi-sizes, alterable orientation, and complex backgrounds. Herein, a YOLO-based detection model (YOLO-D) was proposed for target detection in offshore unmanned aerial vehicle data. Based on the YOLOv3 network, the residual module was improved by establishing dense connections and adding a dual-attention mechanism (CBAM) to enhance the use of features and global information. Then, the loss function of the YOLO-D model was added to the weight coefficients to increase detection accuracy for small-size targets. Finally, the feature pyramid network (FPN) was replaced by the secondary recursive feature pyramid network to reduce the impacts of a complicated environment. Taking the car, boat, and deposit near the coastline as the targets, the proposed YOLO-D model was compared against other models, including the faster R-CNN, SSD, YOLOv3, and YOLOv5, to evaluate its detection performance. The results showed that the evaluation metrics of the YOLO-D model, including precision ( Pr ), recall ( Re ), average precision ( AP ), and the mean of average precision ( mAP ), had the highest values. The mAP of the YOLO-D model increased by 37.95%, 39.44%, 28.46%, and 5.08% compared to the faster R-CNN, SSD, YOLOv3, and YOLOv5, respectively. The AP of the car, boat, and deposit reached 96.24%, 93.70%, and 96.79% respectively. Moreover, the YOLO-D model had a higher detection accuracy than other models, especially in the detection of small-size targets. Collectively, the proposed YOLO-D model is a suitable model for target detection in offshore unmanned aerial vehicle data.

Keywords: offshore monitoring; target detection; deep learning; YOLO; unmanned aerial vehicle (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/23/12980/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/23/12980/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:23:p:12980-:d:686394

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:12980-:d:686394