EconPapers    
Economics at your fingertips  
 

Dynamic Voltage Restorer Integrated with Photovoltaic-Thermoelectric Generator for Voltage Disturbances Compensation and Energy Saving in Three-Phase System

N. Kanagaraj and Hegazy Rezk
Additional contact information
N. Kanagaraj: Electrical Engineering Department, College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, Wadi Addwasir 11991, Saudi Arabia
Hegazy Rezk: Electrical Engineering Department, College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, Wadi Addwasir 11991, Saudi Arabia

Sustainability, 2021, vol. 13, issue 6, 1-31

Abstract: The dynamic voltage restorer (DVR) combined with a photovoltaic–thermoelectric generator (PV-TEG) system is proposed for voltage disturbance compensation in the three-phase four-wire distribution system. The PV-TEG hybrid energy source is used in the DVR system to improve the system ability for deep and long-period power quality disturbance compensation. In addition, the DVR will save grid energy consumption when the hybrid PV-TEG module generates sufficient power to meet the load demand. An enhanced variable factor adaptive fuzzy logic controller (VFAFLC)-based maximum power point tracking (MPPT) control scheme is proposed to extract the maximum possible power from the PV module. Since the PV and TEG combine a hybrid energy source for generating power, the DVR can work efficiently for the voltage sag/swell, outage compensation, and energy conservation mode with minimum energy storage facilities. The in-phase compensation method and the three-leg voltage source inverter (VSI) circuit are chosen in the present system for better voltage and/or power compensation. To confirm the effectiveness of the proposed hybrid PV-TEG integrated DVR system, a simulation-based investigation is carried out with four different operational modes with MATLAB software. The study results confirm that the proposed DVR system can compensate power quality disturbances of the three-phase load with less total harmonics distortion (THD) and will also work efficiently under energy conservation mode to save grid energy consumption. Moreover, the proposed VFAFLC-based control technique performs better to achieve the maximum power point (MPP) quickly and accurately, thereby improving the efficiency of the hybrid energy module.

Keywords: renewable energy; power quality; hybrid system; MPPT; fuzzy logic control (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/6/3511/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/6/3511/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:6:p:3511-:d:521821

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3511-:d:521821