EconPapers    
Economics at your fingertips  
 

Engineering Properties of High-Volume Fly Ash Modified Cement Incorporated with Bottle Glass Waste Nanoparticles

Yousef R. Alharbi and Aref A. Abadel ()
Additional contact information
Yousef R. Alharbi: Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
Aref A. Abadel: Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

Sustainability, 2022, vol. 14, issue 19, 1-26

Abstract: Eco-friendly sustainable construction materials with low carbon dioxide emissions and low energy consumption which utilize agricultural and industrial waste are widely recommended. Utilizing high-volume fly ash waste (FA) as a cement replacement will contribute to a reduction in the environmental problems related to cement production and landfill disposal. It is well known that the inclusion of high amounts of FA (up to 50%) as a cement replacement leads to low strength performance, especially at a concrete’s early age (below 7 days). In this study, a cement mortar with high-volume FA (60%) was developed with strength enhancement. With nanotechnology and nanomaterial benefits, nanoparticles from bottle glass waste (BGWNP) were produced and used to replace 2, 4, 6, 8, and 10% of cement–FA binder. The results showed that the compressive strength significantly improved with the inclusion of the BGWNP in a high-volume FA matrix and the strength trend increased from 21.3 to 328 MPa with increasing nanoparticle content from 0 to 6%. However, the results indicated that the inclusion of nanoparticles up to 6% led to a slight reduction in strength value. Similar trends were observed for other engineering and microstructure properties and the matrix containing 6% of BGWNP achieved the highest performance compared to that of the control sample. It is concluded that, with the utilization of BGWNP, there is an ability to produce high-volume FA-based cement with acceptable engineering properties as well as achieve sustainability goals by reducing pollution, recycling waste, and resolving landfill issues.

Keywords: sustainable mortar; high-volume fly ash; bottle glass waste; nanoparticles (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/19/12459/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/19/12459/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:19:p:12459-:d:930108

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12459-:d:930108