EconPapers    
Economics at your fingertips  
 

A CLUMondo Model-Based Multi-Scenario Land-Use Change Simulation in the Yangtze River Delta Urban Agglomeration, China

Yanhua Zhao, Su De (), Yang Bao, Wei Yang and Yibo Sun
Additional contact information
Yanhua Zhao: Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Su De: Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Yang Bao: Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Wei Yang: Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Yibo Sun: Chinese Research Academy of Environmental Sciences, Beijing 100012, China

Sustainability, 2022, vol. 14, issue 22, 1-15

Abstract: Land-use changes have profound effects on both socio-economic development and the environment. As a result, to optimize land-use planning and management, models are often employed to identify land-use patterns and their associated driving forces. In this work, physical and socioeconomic factors within the Yangtze River Delta Urban Agglomeration (YRDUA) from 2000 to 2015 were identified, integrated, and used as the foundation for a CLUMondo model. Subsequently, the Markov model and the CLUMondo model were combined to predict land-use changes in 2035. Natural growth (NG), economic development (ED), ecological protection (EP), and coordinated social and economic development (CSE) scenarios were set according to the land-use date in the assessment. Results showed that: (1) From 2000 to 2015, urban land increased by 8139.5 km 2 (3.93%), and the paddy field decreased by 7315.8 km 2 (8.78%). The Kappa coefficient of the CLUMondo model was 0.86, indicating that this model can be used to predict the land-use changes of the YRDUA. (2) When this trend was used to simulate landscape patterns in 2035, the land-use structure and landscape patterns varied among the four simulated urban development scenarios. Specifically, urban land increased by 47.6% (NG), 39.6% (ED), 32.9% (EP), and 23.2% (CSE). The paddy field was still the primary landscape, with 35.85% NG, 36.95% ED, 37.01% EP, and 36.96% CSE. Furthermore, under all four scenarios, the landscape pattern tended to simplify and fragment, while connectivity and equilibrium diminished. The results provided herein are intended to elucidate the law of urban agglomeration development and aid in promoting urban sustainable development.

Keywords: land-use; landscape pattern; CLUMondo model; scenario simulation and prediction; urban sprawl; Yangtze River Delta (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/22/15336/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/22/15336/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:22:p:15336-:d:976886

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15336-:d:976886