EconPapers    
Economics at your fingertips  
 

Microcosm Study on the Potential of Aquatic Macrophytes for Phytoremediation of Phosphorus-Induced Eutrophication

Sarah Dean, Muhammad Shahbaz Akhtar (), Allah Ditta, Mohammad Valipour () and Sohaib Aslam
Additional contact information
Sarah Dean: Department of Environmental Sciences, Forman Christian College University, Lahore 54600, Pakistan
Muhammad Shahbaz Akhtar: Department of Environmental Sciences, Forman Christian College University, Lahore 54600, Pakistan
Allah Ditta: Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Dir (U) 18000, Pakistan
Mohammad Valipour: Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO 80217, USA
Sohaib Aslam: Department of Environmental Sciences, Forman Christian College University, Lahore 54600, Pakistan

Sustainability, 2022, vol. 14, issue 24, 1-16

Abstract: Phosphorous (P) is one of the primary nutrients to cause the eutrophication of water bodies. This process leads to algal blooms and anoxic conditions which have consequences in the form of mortality of aquatic animals, and impaired water quality. Aquatic macrophytes could be the promising candidates that can filter P from water contaminated with high levels of nutrients. In the present microcosm research, two types of floating macrophytes, i.e., salvinia floater ( Salvinia natans ) and water lettuce ( Pistia stratiotes ) were deployed to compare their P-removal rates and efficiency under different incubation times (72, 168, and 264 h intervals). Plants were exposed to different treatments, i.e., (1) P-fed plants, (2) P-starved plants, (3) control treatments, and (4) synthetic wastewater treatment. Both plant species showed substantial P-removal efficiency from P-eutrophicated solutions and removed P-amounts were significantly correlated (R 2 ≅ 1 at p ≤ 0.05) with P-accumulated in plant biomass. Plants in the P-starved state showed significantly higher P-removal rates and removal efficiency compared to plants without P-starvation. When Salvinia natans was exposed to 10 mg L −1 of P for 264 h of incubation, 21 g of fresh biomass was recorded during the P-starved phase, more than P. stratiotes (14 g) under similar conditions. The P. stratiotes removed 86.04% of P from 5 mg L −1 P solution, 53.76% from 10 mg L −1 P solution and 66.84% from SWW in the P-starved phase whereas, removal efficiency without the P-starvation phase was 33.03% from 5 mg L −1 P solution, 39.66% from 10 mg L −1 P solution, and 31.64% from SWW after 264 h interval. Compared to S. natans , P. stratiotes removed 86.0% P from a 5 mg L −1 P solution, whereas S. natans removed 56.6% when exposed to the same P solution (5 mg L −1 P solution). Bioconcentration factor (BCF) values were higher in Salvinia natans 10.5 (0.5 mg L −1 P solutions) and 1.5 (5 mg L −1 P solutions) compared to 9.9 and 1.3 of Pistia stratiotes under P-starved conditions. The present work highlighted that these aquatic plants can be a potential green sustainable solution for purifying water with excessive nutrients (N and P), especially waters of wetlands, lagoons, and ponds.

Keywords: macrophytes; phytoremediation; water lettuce; salvinia floater; P-eutrophication; P-starvation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/24/16415/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/24/16415/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:24:p:16415-:d:997124

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16415-:d:997124