EconPapers    
Economics at your fingertips  
 

Earthquake Resilience Framework for a Stormwater Pipe Infrastructure System Integrating the Best Worst Method and Dempster–Shafer Theory

Maryam Garshasbi and Golam Kabir
Additional contact information
Maryam Garshasbi: Industrial Systems Engineering, University of Regina, Regina, SK S4S 0A2, Canada
Golam Kabir: Industrial Systems Engineering, University of Regina, Regina, SK S4S 0A2, Canada

Sustainability, 2022, vol. 14, issue 5, 1-29

Abstract: Stormwater pipe infrastructure is a fundamental requirement of any nation, but pipes can be damaged in natural disasters. Consequently, evaluating the resilience of stormwater infrastructure to earthquake damage is an essential duty for any city because it outlines the capability to recover from a disaster after the event. The resilience quantification process needs various data types from various sources, and uncertainty and partial data may be included. This study recommends a resilience assessment framework for stormwater pipe infrastructure facing earthquake hazards using Hierarchical Evidential Reasoning (HER) on the basis of the Dempster–Shafer (D-S) theory. The developed framework was implemented in the City of Regina, SK, Canada to quantify the resilience of the stormwater pipe infrastructure. First, various resilience factors were identified from the literature. Based on experts’ judgment, the weight of these factors was determined using the Best Worst Method (BWM). After that, the resilience was determined using the D–S theory. Finally, sensitivity analysis was conducted to examine the sensitivity of the factors of the recommended hierarchical stormwater infrastructure resilience model. The recommended earthquake resilience assessment model produced satisfying outcomes, which showed the condition state of resilience with the degree of uncertainty.

Keywords: stormwater pipe infrastructure; resilience; earthquake hazard; best worst method; Dempster–Shafer theory; sensitivity analysis (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/5/2710/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/5/2710/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:5:p:2710-:d:759199

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2710-:d:759199