EconPapers    
Economics at your fingertips  
 

Robust Wavelet Transform Neural-Network-Based Short-Term Load Forecasting for Power Distribution Networks

Yijun Wang, Peiqian Guo (), Nan Ma and Guowei Liu ()
Additional contact information
Yijun Wang: Shenzhen Power Supply Co., Ltd., Shenzhen 518020, China
Peiqian Guo: Department of Electrical Engineering, Tsinghua University, Beijing 100083, China
Nan Ma: Shenzhen Power Supply Co., Ltd., Shenzhen 518020, China
Guowei Liu: Shenzhen Power Supply Co., Ltd., Shenzhen 518020, China

Sustainability, 2022, vol. 15, issue 1, 1-17

Abstract: A precise short-term load-forecasting model is vital for energy companies to create accurate supply plans to reduce carbon dioxide production, causing our lives to be more environmentally friendly. A variety of high-voltage-level load-forecasting approaches, such as linear regression (LR), autoregressive integrated moving average (ARIMA), and artificial neural network (ANN) models, have been proposed in recent decades. However, unlike load forecasting in high-voltage transmission systems, load forecasting at the distribution network level is more challenging since distribution networks are more variable and nonstationary. Moreover, existing load-forecasting models only consider the features of the time domain, while the demand load is highly correlated to the frequency-domain information. This paper introduces a robust wavelet transform neural network load-forecasting model. The proposed model utilizes both time- and frequency-domain information to improve the model’s prediction accuracy. Firstly, three wavelet transform methods, variational mode decomposition (VMD), empirical mode decomposition (EMD), and empirical wavelet transformation (EWT), were introduced to transform the time-domain demand load data into frequency-domain data. Then, neural network models were trained to predict all components simultaneously. Finally, all the predicted data were aggregated to form the predicted demand load. Three cases were simulated in the case study stage to evaluate the prediction accuracy under different layer numbers, weather information, and neural network types. The simulation results showed that the proposed robust time–frequency load-forecasting model performed better than the traditional time-domain forecasting models based on the comparison of the performance metrics, including the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE).

Keywords: distributed network; load forecasting; wavelet transform; neural network; smart grid (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/1/296/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/1/296/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2022:i:1:p:296-:d:1013975

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:296-:d:1013975