EconPapers    
Economics at your fingertips  
 

Characteristics of Spatial–Temporal Variations in Coupling Coordination between Industrial Water Use and Industrial Green Development Systems in China

Qinghua Pang, Hailiang Huang and Lina Zhang ()
Additional contact information
Qinghua Pang: Business School, Hohai University, Changzhou 213022, China
Hailiang Huang: Business School, Hohai University, Changzhou 213022, China
Lina Zhang: Business School, Hohai University, Changzhou 213022, China

Sustainability, 2022, vol. 15, issue 1, 1-19

Abstract: The coupling coordination between industrial water use (IWU) and industrial green development (IGD) systems is crucial for achieving sustainable development goals. This paper measures the coupling coordination degree between IWU and IGD systems, and the spatial–temporal evolution characteristics of the degree are discussed. Here, the IWU system is assessed by adopting a dynamic slacks-based measure model, and the IGD system’s performance is evaluated using an entropy-weighted TOPSIS model. The results showed that: (1) The provincial IWU efficiency showed a rising trend from 2009 to 2018 in general, while its spatial dimension showed a distribution of high in the eastern region and low in the western region. (2) The IGD performance in the eastern region was better than that in the central and western regions; the gap in industrial innovation and industrial resources was the main factor. (3) The spatial structure of the coupling coordination degree between IWU and IGD systems was gradually stable. It also had a strong spatial dependence and its evolution volatility has been enhanced. (4) The coupling coordination was improving but exhibited a dynamic local spatial dependence and volatile process, and its spatial agglomeration had a relatively higher path dependence and locked spatial features.

Keywords: coupling coordination; industrial water use; industrial green development; slacks-based measure model; entropy-weighted TOPSIS model (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/1/330/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/1/330/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2022:i:1:p:330-:d:1014720

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:330-:d:1014720