EconPapers    
Economics at your fingertips  
 

Development of Air Ventilation Garments with Small Fan Panels to Improve Thermal Comfort

Mengmeng Zhao (), Chuansi Gao and Min Wang
Additional contact information
Mengmeng Zhao: College of Textile and Clothing, Shanghai University of Engineering Science, Shanghai 201620, China
Chuansi Gao: Aerosol and Climate Laboratory, Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, 221 00 Lund, Sweden
Min Wang: College of Fashion and Art Design, Donghua University, Shanghai 200051, China

Sustainability, 2023, vol. 15, issue 11, 1-15

Abstract: Air ventilation garments (AVGs) are reported to be effective in improving thermal comfort in hot environments in previous research. The purpose of this study was to develop AVGs with small fan panels and examine their cooling performance. Three AVGs equipped with more, much smaller sized ventilation fans were developed, including FFV (ten small fans all located on the front body), BBV (ten small fans all located on the back body), and FBV (six small fans located on the front body and four small fans located on the back body). Another garment, without ventilation fans but with the same structure and textile material, was made as a reference garment (CON). The cooling performance of the four garments was examined through subject trials in a moderately hot environment of 32 °C and 60% relative humidity. Simulated office work with 70 min of sedentary activity was performed. The results showed that the physiological indexes of the mean body skin temperature, the mean torso skin temperature, and the heart rate in the three AVG scenarios were significantly lower than those in the CON condition ( p < 0.05). Thermal sensation, thermal comfort, and wetness sensation were also improved when wearing the three AVGs ( p < 0.05). No significant difference was displayed among the three AVGs on the whole body and the whole torso ( p > 0.05) due to the similarity of the air velocity created by the fan panels. A significant difference was found on the local torso skin, with FFV significantly reducing the chest and the belly skin temperature, and BBV significantly reducing the scapula and the lower back skin temperature ( p < 0.05). This study indicates that the AVGs with the small fan panels were effective in reducing heat strain and improving thermal comfort, and thus are recommended for use in hot environments.

Keywords: integrated electrical fans; cooling garment; skin temperature; thermal sensation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/11/8452/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/11/8452/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:11:p:8452-:d:1153411

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8452-:d:1153411