EconPapers    
Economics at your fingertips  
 

Effect of Chemical Pre-Treatment on the Catalytic Performance of Oil Palm EFB Fibre Supported Magnetic Acid Catalyst

Shamala Gowri Krishnan, Fei Ling Pua () and Zhang Fan
Additional contact information
Shamala Gowri Krishnan: College of Graduate Studies, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
Fei Ling Pua: Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
Zhang Fan: Biomass Group, Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefulu, Kunming 650223, China

Sustainability, 2023, vol. 15, issue 11, 1-14

Abstract: The development of heterogenous catalysts using renewable materials has received wide attention. A heterogenous catalyst has been a preferred choice as it evades the disadvantages of homogeneous catalysts, nevertheless, heterogenous catalysts has limited activity and a longer separation process. The current study emphasises the preparation of a new magnetic catalyst using oil palm empty fruit bunch (EFB) fibre as a carbon-based support material. The effect of different alkaline pre-treatments over the methyl ester conversion rate were investigated. The catalyst preparation parameters were studied by using the single factor optimisation approach, including the fibre loading, impregnation time, calcination temperature, and calcination time. Their effects in the esterification of oleic acid were investigated in this study. The optimisation study shows that the Na 2 CO 3 -treated(T)-EFBC magnetic catalyst had the highest esterification rate of 93.5% with 7 g EFB fibre loading, a 2 h impregnation time and a calcination temperature of 500 °C for 2 h. The catalyst possessed a good acidity of 3.5 mmol/g with excellent magnetism properties. This study showed that the catalysts are magnetically separable and exhibited good stability with 82.1% after five cycles. The oil palm EFB supported magnetic acid catalyst indicates it as a potential option to the existing solid catalysts that is economical and environmentally friendly for the esterification process.

Keywords: biomass; catalyst; magnetic; oil palm; oleic acid; energy (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/11/8637/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/11/8637/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:11:p:8637-:d:1156400

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8637-:d:1156400