EconPapers    
Economics at your fingertips  
 

Applying Transfer Learning Approaches for Intrusion Detection in Software-Defined Networking

Hsiu-Min Chuang () and Li-Jyun Ye
Additional contact information
Hsiu-Min Chuang: Department of Information and Computer Engineering, Chung Yuan Christian University, Taoyuan City 320, Taiwan
Li-Jyun Ye: Department of Computer Science and Information Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan City 335, Taiwan

Sustainability, 2023, vol. 15, issue 12, 1-24

Abstract: In traditional network management, the configuration of routing policies and associated settings on individual routers and switches was performed manually, incurring a considerable cost. By centralizing network management, software-defined networking (SDN) technology has reduced hardware construction costs and increased flexibility. However, this centralized architecture renders information security vulnerable to network attacks, making intrusion detection in the SDN environment crucial. Machine-learning approaches have been widely used for intrusion detection recently. However, critical issues such as unknown attacks, insufficient data, and class imbalance may significantly affect the performance of typical machine learning. We addressed these problems and proposed a transfer-learning method based on the SDN environment. The following experimental results showed that our method outperforms typical machine learning methods. (1) our model achieved a F1-score of 0.71 for anomaly detection for unknown attacks; (2) for small samples, our model achieved a F1-score of 0.98 for anomaly detection and a F1-score of 0.51 for attack types identification; (3) for class imbalance, our model achieved an F1-score of 1.00 for anomaly detection and 0.91 for attack type identification. In addition, our model required 15,230 seconds (4 h 13 m 50 s) for training, ranking second among the six models when considering both performance and efficiency. In future studies, we plan to combine sampling techniques with few-shot learning to improve the performance of minority classes in class imbalance scenarios.

Keywords: transfer learning; meta-learning; intrusion detection; software-defined networking (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/12/9395/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/12/9395/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:12:p:9395-:d:1168753

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9395-:d:1168753