EconPapers    
Economics at your fingertips  
 

Energy Accumulation Characteristics and Induced Rockburst Mechanism of Roadway Surrounding Rock under Multiple Mining Disturbances: A Case Study

Zhenkai Ma, Sheng Li and Xidong Zhao ()
Additional contact information
Zhenkai Ma: School of Mining, Liaoning Technical University, Fuxin 123000, China
Sheng Li: School of Mining, Liaoning Technical University, Fuxin 123000, China
Xidong Zhao: School of Mine Safety, North China Institute of Science and Technology, Langfang 065201, China

Sustainability, 2023, vol. 15, issue 12, 1-17

Abstract: The source of energy release when rockburst occurs must be determined to understand the mechanisms underlying disaster formation and achieve accurate prevention and control. Although previous research has systematically investigated the energy source underlying rockburst from different perspectives, issues such as an unclear understanding of the energy accumulation state and inaccurate positioning of the energy release source remain to be resolved. In this study, the “1·17” major roof accident in the Danshuigou Mine was used as the background to evaluate and analyze the stress environment and energy accumulation characteristics of roadway surrounding rock under multiple mining disturbances, and the results showed that a super energy package occurs in the surrounding rock of the mining roadway. Subsequently, the evolution process of energy in this region and the mechanism of induced rockburst were elaborated. The results showed that the degree of stress concentration in the surrounding rock of the roadway will increase several times as the number of mining disturbances increases. Under the influence of multiple mining disturbances, the maximum principal stress peak of the surrounding rock of the roadway can reach 5–10 times the maximum principal stress value outside the mining-affected area. A large amount of elastic energy was accumulated in the rock surrounding the roadway, and super-high-density energy packages were formed locally. The maximum energy density value reached 50–185 times the value observed in areas outside the mining-affected zone. Thus, rockburst may be induced when the large amount of energy accumulated in the super energy package is suddenly and violently released; moreover, the degree of energy accumulation in the super energy package is likely closely related to the magnitude of rockburst. These results have important theoretical significance and application value for clarifying the mechanism of rockburst and improving the effectiveness of rockburst prediction and prevention.

Keywords: multiple mining disturbances; stress field; energy accumulation; super energy package; rockburst (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/12/9595/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/12/9595/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:12:p:9595-:d:1171339

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9595-:d:1171339