The Application of Clinoptilolite as the Green Catalyst in the Solvent-Free Oxidation of α-Pinene with Oxygen
Jadwiga Grzeszczak,
Agnieszka Wróblewska (),
Karolina Kiełbasa,
Zvi C. Koren and
Beata Michalkiewicz ()
Additional contact information
Jadwiga Grzeszczak: Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
Agnieszka Wróblewska: Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
Karolina Kiełbasa: Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
Zvi C. Koren: The Edelstein Center, Department of Chemical Engineering, Shenkar College of Engineering, Design and Art, 12 Anna Frank Street, Ramat Gan 52526, Israel
Beata Michalkiewicz: Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
Sustainability, 2023, vol. 15, issue 13, 1-19
Abstract:
In this work, we present the catalytic application of the naturally occurring zeolite, clinoptilolite, in the oxidation of α-pinene, a natural terpene compound. Clinoptilolites with different average particle sizes, designated as (in μm) clin_1 (20), clin_2 (50), clin_3 (200), and clin_4 (500–1000), were used as the green catalysts in the solvent-free oxidation of α-pinene with oxygen. Prior to their application in catalytic tests, the catalysts were characterized by the following methods: nitrogen sorption at 77 K, EDXRF, XRD, SEM, UV-Vis, and FTIR. The effects of the temperature, amount of the catalyst, and reaction time on the product’s selectivity and α-pinene conversion were determined. At the optimal conditions (a temperature of 100 °C, catalyst content (clin_4) in the reaction mixture of 0.05 wt%, and 210 min reaction time), the following compounds were obtained as the main products: α-pinene oxide (selectivity 29 mol%), verbenol (selectivity 17 mol%), and verbenone (selectivity 13 mol%). The conversion of α-pinene under these conditions amounted to 35 mol%. Additionally, the kinetic modeling of α-pinene oxidation over the most active catalyst (clin_4) was performed. The proposed method of oxidation is environmentally safe because it does not require the separation of products from the solvent. In addition, this method allows for managing the biomass in the form of turpentine, which is the main source of α-pinene. The catalytic application of clinoptilolite in the oxidation of α-pinene has not yet been reported in the literature.
Keywords: clinoptilolite; zeolite catalysts; α-pinene; oxidation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/13/10381/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/13/10381/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:13:p:10381-:d:1184413
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().