EconPapers    
Economics at your fingertips  
 

Optimizing Perishable Product Supply Chain Network Using Hybrid Metaheuristic Algorithms

Lihong Pan (), Miyuan Shan and Linfeng Li ()
Additional contact information
Lihong Pan: Business School, Hunan University, Changsha 410082, China
Miyuan Shan: Business School, Hunan University, Changsha 410082, China
Linfeng Li: Business School, Hunan Agricultural University, Changsha 410128, China

Sustainability, 2023, vol. 15, issue 13, 1-21

Abstract: This paper focuses on optimizing the long- and short-term planning of the perishable product supply chain network (PPSCN). It addresses the integration of strategic location, tactical inventory, and operational routing decisions. Additionally, it takes into consideration the specific characteristics of perishable products, including their shelf life, inventory management, and transportation damages. The main objective is to minimize the overall supply chain cost. To achieve this, a nonlinear mixed integer programming model is developed for the multi-echelon, multi-product, and multi-period location-inventory-routing problem (LIRP) in the PPSCN. Two hybrid metaheuristic algorithms, namely genetic algorithm (GA) and multiple population genetic algorithm (MPGA), are hybridized with variable neighborhood search (VNS) and proposed to solve this NP-hard problem. Moreover, a novel coding method is devised to represent the complex structure of the LIRP problem. The input parameters are tuned using the Taguchi experimental design method, considering the sensitivity of meta-heuristic algorithms to these parameters. Through experiments of various scales, the hybrid MPGA with VNS indicates superior performance, as evidenced by the experimental results. Sensitivity analysis is conducted to examine the influence of key model parameters on the optimal objective, providing valuable management implications. The results clearly validate the efficacy of the proposed model and solution method as a reliable tool for optimizing the design problem of the PPSCN.

Keywords: perishable products; supply chain network; location-inventory-routing problem; genetic algorithm; hybrid metaheuristic algorithms (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/13/10711/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/13/10711/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:13:p:10711-:d:1188910

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10711-:d:1188910