EconPapers    
Economics at your fingertips  
 

Analysis of the Life Cycle and Properties of Concrete with the Addition of Waste Car Glass

Anna Starczyk-Kołbyk () and Marcin Małek
Additional contact information
Anna Starczyk-Kołbyk: Faculty of Civil Engineering and Geodesy, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00–908 Warsaw, Poland
Marcin Małek: Faculty of Civil Engineering and Geodesy, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00–908 Warsaw, Poland

Sustainability, 2023, vol. 15, issue 14, 1-35

Abstract: Sustainable construction aims to reduce the negative environmental impact of buildings throughout their life cycle, which includes design, construction, use, demolition and recycling. Taking into account the successive stages of the concrete life cycle and the elements of sustainable construction, the need to carry out research and analysis of the properties of concrete with additives was noticed in aspects of the concrete life cycle, e.g., the production stage, its durability during operation and the possibility of re-use after demolition. It was also noticed that the use of additives in the form of waste materials brings many benefits, including improvement of some parameters of concrete while saving natural resources. The article presents a detailed analysis of all four phases of the assessment of the life cycle of concrete modified with the addition of waste car glass: goal and scope definition, inventory analysis, impact assessment and interpretation. The progressive increase in the amount of glass waste produced each year around the world made it necessary to start the search for new recycling methods. During the research, concrete mixes were prepared according to a new, laboratory-calculated recipe containing glass fibers, natural aggregate (sand with a fraction of 0–2), crushed aggregate (basalt with a fraction of 2–8) and Portland cement (52.5 MPa). Concrete has been designed in four variants, which differ based on n the amount of tempered glass added. The first variant W1 was modified with 66.67 kg/m 3 , the second variant W2 contained the addition of 111.11 kg/m 3 and the third variant W3—155.56 kg/m 3 . After 28 days, volumetric densities, values of the modulus of elasticity and thermal properties were determined; strength tests were also carried out during which the compressive strength (Reference = 70.30 MPa; W1 = 68.18 MPa; W2 = 70.13 MPa; W3 = 68.60 MPa), tensile strength in bending (Reference = 5.70 MPa; W1 = 5.63 MPa; W2 = 5.70 MPa; W3 = 5.27 MPa) and tensile strength in splitting were determined. On the remains of the samples from the strength tests, microstructure tests were performed. The conclusions and considerations on the further direction of the research were included in the discussion. The novelty of our research is related to the elimination of the glass waste processing process, which was described in detail in the Introduction.

Keywords: waste glass; life cycle; LCA; modified concrete; recycling; sustainable construction; construction materials; eco-friendly concrete (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/14/10836/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/14/10836/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:14:p:10836-:d:1190992

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10836-:d:1190992