EconPapers    
Economics at your fingertips  
 

A Cross-Layer Media Access Control Protocol for WBANs

Linfeng Zheng, Juncheng Hu and Yingjun Jiao ()
Additional contact information
Linfeng Zheng: College of Philosophy and Society, Jilin University, Changchun 130012, China
Juncheng Hu: College of Computer Science and Technology, Jilin University, Changchun 130012, China
Yingjun Jiao: College of Physical Education, Jilin University, Changchun 130012, China

Sustainability, 2023, vol. 15, issue 14, 1-16

Abstract: Wireless body area network (WBAN) is an emerging comprehensive technology that can deeply integrate with e-health and smart sports. As a wearable network, improving the quality of network service and user experience is crucial. Due to the miniaturized design of sensors, their available energy from batteries is limited, making the extension of their lifetime a key research challenge. Existing studies have proposed methods to improve energy efficiency, but there are still limitations in addressing dynamic adaptive aspects of differential energy distribution and channel conditions. In order to further extend the lifetime of sensor nodes and networks while ensuring quality of service, and to provide a reliable transmission mechanism for heterogeneous application data, this paper presents a cross-layer optimized MAC protocol mechanism. The protocol takes into account the transmission requirements of different types of data and redesigns the superframe. To improve the lifetime of nodes, we propose an energy-adaptive adjustment mechanism considering the channel conditions. At the same time, a cooperative transmission mechanism is proposed to further enhance network lifetime. In experiments conducted on two typical networks, compared to IEEE 802.15.6, the power adjustment scheme improves the network lifetime by 2.8 to 3.7 times, and the cooperative mechanism between nodes further increases the network lifetime by 17% to 44%. Our proposed scheme effectively extends the network lifetime while ensuring quality of service, avoiding frequent battery resets for users, and effectively improving the user experience quality.

Keywords: wireless body area network; power control; network lifetime; cooperative transmission (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/14/11381/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/14/11381/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:14:p:11381-:d:1199673

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11381-:d:1199673