EconPapers    
Economics at your fingertips  
 

New Evacuated Tube Solar Collector with Parabolic Trough Collector and Helical Coil Heat Exchanger for Usage in Domestic Water Heating

Sana Said, Sofiene Mellouli (), Talal Alqahtani, Salem Algarni and Ridha Ajjel
Additional contact information
Sana Said: Laboratory of Energy and Materials (LabEM-LR11ES34), Higher School of Science and Technology of Hammam Sousse (ESSTHS), University of Sousse, Street Lamine Abbassi, Hammam Sousse 4011, Tunisia
Sofiene Mellouli: Mechanical Engineering Department, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
Talal Alqahtani: Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 9004, Saudi Arabia
Salem Algarni: Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 9004, Saudi Arabia
Ridha Ajjel: Laboratory of Energy and Materials (LabEM-LR11ES34), Higher School of Science and Technology of Hammam Sousse (ESSTHS), University of Sousse, Street Lamine Abbassi, Hammam Sousse 4011, Tunisia

Sustainability, 2023, vol. 15, issue 15, 1-17

Abstract: Buildings represent approximately two-thirds of the overall energy needs, mainly due to the growing energy consumption of air conditioning and water heating loads. Hence, it is necessary to minimize energy usage in buildings. Numerous research studies have been carried out on evacuated tube solar collectors, but to our knowledge, no previous study has mentioned the combination of an evacuated tube solar collector with a parabolic trough collector and a helical coil heat exchanger. The objective of this paper is to evaluate the thermal behavior of an innovative evacuated tube solar collector (ETSC) incorporated with a helical coil heat exchanger and equipped with a parabolic trough collector (PTC) used as a domestic water heater. To design the parabolic solar collector, the Parabola Calculator 2.0 software was used, and the Soltrace software was used to determine the optical behavior of a PTC. Moreover, an analytical model was created in order to enhance the performance of the new model of an ETSC by studying the impact of geometric design and functional parameters on the collector’s effectiveness. An assessment of the thermal behavior of the new ETSC was performed. Thus, the proposed analytical model gives the possibility of optimizing ETSCs used as domestic water heaters with lower computational costs. Furthermore, the optimum operational and geometrical parameters of the new ETSC base-helical tube heat exchanger include a higher thermal efficiency of 72%. This finding highlights the potential of the heat exchanger as an excellent component that can be incorporated into ETSCs.

Keywords: analytical model; solar collector; helical tube; optimum parameters (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/15/11497/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/15/11497/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:15:p:11497-:d:1201969

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11497-:d:1201969