EconPapers    
Economics at your fingertips  
 

The Impact of Residential Cluster Layout on Building Energy Consumption and Carbon Emissions in Regions with Hot Summers and Cold Winters in China

Junle Yan, Hui Zhang (), Xiaoxin Liu, Ling Ning and Wong Nyuk Hien
Additional contact information
Junle Yan: School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
Hui Zhang: School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
Xiaoxin Liu: School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
Ling Ning: School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
Wong Nyuk Hien: College of Design and Engineering, National University of Singapore, Singapore 117566, Singapore

Sustainability, 2023, vol. 15, issue 15, 1-18

Abstract: Since the early 2010s, building energy consumption in regions in China with hot summers and cold winters has experienced an average annual growth rate of 6.5%, while building carbon emissions demonstrated an average annual growth rate of 3.7%. This underscores the pressing need to reduce building energy consumption and carbon emissions. The layout of residential clusters plays a critical role in determining the effective shading coefficient, which directly impacts solar radiation gain and subsequently affects energy consumption and carbon emissions. To explore this correlation and optimize the layout configuration of residential clusters to achieve the objective of minimizing energy consumption and carbon emissions in buildings, our study employed ECOTECT 2011 software to assess the layout attributes of different residential clusters through an analysis of the effective shading coefficient. Furthermore, using VirVil-HTB2 17_04_21 software, we simulated the solar radiation, building energy consumption, and carbon emissions for different residential cluster layouts. To examine the interplay between solar radiation, energy consumption, and carbon emissions, SPSS 27 software was used. The findings revealed that different residential cluster configurations exhibit unique effective shading coefficients, substantially influencing the solar radiation received by buildings and, consequently, their thermal performance. Our research reveals that adopting a staggered layout can lead to a reduction in average operating energy consumption by up to 2.23% and cooling energy consumption by up to 7.17%, compared to an enclosed layout. Similarly, enclosed layouts can contribute to a decrease in heating energy consumption by up to 4.06%, in contrast to courtyard layouts. Additionally, scattered layouts can effectively reduce carbon emissions by up to 0.95% when compared to courtyard layouts.

Keywords: building operating energy consumption and carbon emission; residential cluster layout; VirVil-HTB2; effective shading coefficient; solar radiation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/15/11915/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/15/11915/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:15:p:11915-:d:1209393

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11915-:d:1209393