EconPapers    
Economics at your fingertips  
 

Techno-Environmental Analysis of a Microgrid Energy System in a University Office Complex

Sulaiman A. Almohaimeed ()
Additional contact information
Sulaiman A. Almohaimeed: Department of Electrical Engineering, College of Engineering, Qassim University, Unaizah 56452, Saudi Arabia

Sustainability, 2023, vol. 15, issue 16, 1-27

Abstract: The world is undergoing an irreversible shift towards clean energy. Microgrids are recognized as a key technology that holds significant potential to make a substantial difference in this regard. The paper provides a comprehensive overview of how microgrids work and their impact on climate. The research presented in this paper focuses on reducing carbon dioxide (CO 2 ) in the main campus of Qassim University, Saudi Arabia, through the development and implementation of an engineering model that facilitates the installation of a microgrid system designed to meet the university’s sustainability goals. The study aims to explore possible solutions that can reduce emissions in the administrative building (A7) at Qassim University and meet the university environmental plan. Therefore, a comprehensive study is conducted to investigate the potential reduction in emissions associated with the installation of a microgrid system. This microgrid system operates in a grid-connected mode and comprises three main components: the load, a photovoltaic (PV) system, and batteries. The results of the study indicate that the microgrid reveals a notable transition in the primary sources of electricity. Moreover, the microgrid system proves its capability to meet a substantial portion of the daily energy requirements, highlighting its efficiency and effectiveness in addressing energy needs. The findings of this study highlight the significant potential of the proposed model in curbing carbon emissions, as it demonstrates a reduction from 615.8 to 147.4 Mt of CO 2 . This reduction aligns with the university’s commitment to sustainability and green initiatives. The computed decrease in carbon footprint emphasizes the possibility of the suggested model to encourage sustainable practices among the university community and mitigate the environmental consequences of energy usage.

Keywords: carbon emission; design; energy consumption; modeling; photovoltaic cells; power generation; solar energy; solar power generation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/16/12506/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/16/12506/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:16:p:12506-:d:1219274

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12506-:d:1219274