EconPapers    
Economics at your fingertips  
 

The Composition and Assembly of Soil Microbial Communities Differ across Vegetation Cover Types of Urban Green Spaces

Yangyi Zhou and Jiangping Wang ()
Additional contact information
Yangyi Zhou: School of Urban Design, Wuhan University, Wuhan 430072, China
Jiangping Wang: School of Urban Design, Wuhan University, Wuhan 430072, China

Sustainability, 2023, vol. 15, issue 17, 1-15

Abstract: Soil microorganisms play an important role in urban green spaces by providing ecological functions. However, information on the structure and assembly of microbial communities and the public risk of pathogenic bacteria in urban green spaces remains elusive. Here, we conducted a field survey on soil organisms in different vegetation cover types of urban green spaces (e.g., grasslands, shrublands, and woodlands) based on 16 S rRNA gene amplicon sequencing. We found that soil microbial communities in grasslands were dominated by Pseudomonadota, Acidobacteriota, Actinomycetota, and Chloroflexota. The diversity and niche breadth of the microbial communities in grasslands showed differences compared to shrublands and woodlands. Stochastic processes, which contribute to community assembly in grasslands, were lower compared to shrublands and woodlands, dominating the soil microbial community assembly of urban green spaces. Compared with soil microbial communities in scrublands and woodlands, the network of soil microbial communities in grasslands was simpler and had a weaker stability. Furthermore, the value of the microbial index of pathogenic bacteria in the observed green spaces was 0.01, which means that the risk of potential pathogens in green spaces was low. This study provides crucial information for the sustainable management of urban green spaces by regulating soil microorganisms, offering novel insights into the public health risks associated with potential pathogenic bacteria in these green spaces.

Keywords: urban parks; soil microbiome; neutral process; potential pathogenic bacteria (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/17/13105/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/17/13105/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:17:p:13105-:d:1229650

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:13105-:d:1229650