EconPapers    
Economics at your fingertips  
 

An Evaluation of the Cracking Resistance of Steel- and Glass-Fiber-Reinforced Asphalt Mixtures Produced at Different Temperatures

Ayhan Oner Yucel ()
Additional contact information
Ayhan Oner Yucel: Department of Civil Engineering, Faculty of Engineering, Aydin Adnan Menderes University, Merkez Kampus, Aydin 09010, Turkey

Sustainability, 2023, vol. 15, issue 18, 1-15

Abstract: This study focuses on the effects of the production temperatures, warm mix asphalt (WMA) additive, and fiber content on the cracking resistance of steel- and glass-fiber-reinforced asphalt mixtures. By using three different approaches, which included different mixing and compaction temperatures, along with the incorporation of a WMA additive, the samples were produced utilizing the Marshall mix design method. The low-temperature cracking resistance and bottom-up fatigue cracking resistance of the asphalt mixture samples were assessed through indirect tensile (IDT) tests performed at two different test temperatures: −10 °C and 20 °C, respectively. According to the fracture work density values, glass fibers significantly improve the low-temperature cracking performance of asphalt mixtures. Furthermore, it was found that the low-temperature cracking resistance of the hot mix asphalt (HMA) mixtures containing fibers was similar to that of the mixtures prepared using the WMA additive at 15 °C lower mixing and compaction temperatures than the HMA mixtures. To conclude, the WMA additive improved the compactability of the steel- and glass-fiber-reinforced asphalt mixtures without compromising the low temperature cracking performance, despite the low mixing and compaction temperatures.

Keywords: steel fiber; glass fiber; warm mix asphalt; cracking resistance; indirect tensile test (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/18/13356/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/18/13356/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:18:p:13356-:d:1234103

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13356-:d:1234103