EconPapers    
Economics at your fingertips  
 

A Comprehensive Study of Assessing Sustainable Agricultural Water Management under Changing Climate Scenarios—A Regional Basis Study in the Western Ghats, India

T. I. Eldho (), Navya Chandu and Kashish Sadhwani
Additional contact information
T. I. Eldho: Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
Navya Chandu: Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
Kashish Sadhwani: Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India

Sustainability, 2023, vol. 15, issue 18, 1-18

Abstract: The Western Ghats (WG) in South India is a biological hotspot with a cluster of small river basins and heterogeneous climate and vegetation patterns, and it is categorized under the water stress region by Central Water Commission (CWC). This study aims to evaluate the effects of climate change and land use/land cover (LULC) transformations on water balance components and irrigation water demand (IWD) across different regions of WG for a future period (2020–2050). The variable infiltration capacity model has been calibrated separately for the upper, middle, and lower regions of WG. Further, climate projections from the CMIP6 experiment (SSP2 45/SSP5 85) have been used for future projections of water balance components. The land use change shows an increase in built-up (5.79%) and a decrease in cultivable land (1.24%) by the end of 2030 from 1995. The combined impact due to climate and LULC change shows that the future rainfall/runoff increases in the lower regions of the basin by 100/36.5 mm/year through SSP 4.5. However, the summer months show an increasing water requirement in the future for the Ghats and Nilgiri regions of the basin. The present regional-based study will be useful for future agriculture water management practices in the region for sustainable development and the study can be extended to other similar regions.

Keywords: climate change; CMIP6; GCM; hydrology; VIC; water balance (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/18/13459/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/18/13459/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:18:p:13459-:d:1235542

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13459-:d:1235542