Dynamic Modulus Prediction Validation for the AASHTOWare Pavement ME Design Implementation in Egypt
Maram Saudy (),
Tamer Breakah and
Sherif El-Badawy
Additional contact information
Maram Saudy: Department of Construction Engineering, The American University in Cairo (AUC), AUC Avenue, New Cairo 11835, Egypt
Tamer Breakah: Department of Construction Management and Interior Design, Ball State University, Muncie, IN 47303, USA
Sherif El-Badawy: Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
Sustainability, 2023, vol. 15, issue 18, 1-25
Abstract:
Dynamic Modulus, E* is a crucial property of the hot mix asphalt (HMA). For the AASHTOWare Pavement ME design, E* is an essential material input. E* can be measured in the laboratory or predicted using different models based on some fundamental properties of the HMA. The NCHRP 1-37A and NCHRP 1-40D prediction models are the two main models adopted by the AASHTOWare to predict the E* based on the HMA mixture volumetrics, gradation, and binder properties. The main objective of this research was to validate these two prediction models using local HMA mixes for the purpose of the regional application of the AASHTOWare Pavement ME design in Egypt. For this purpose, the E* values of ten locally plant-produced HMA mixes were measured in the laboratory. The two E* prediction models were then used to estimate the E* values for the same materials. Consequently, the performance of both models was studied by comparing the measured values to the estimated values. The results showed that the NCHRP 1-40D prediction model can satisfactorily predict the E* of the Egyptian HMA mixes with minimal bias and high accuracy. The model yielded an adjusted coefficient of determination (R 2 ) of 0.86 based on 480 E* measurements. On the other hand, the NCHRP 1-37A prediction accuracy was not satisfactory, with very poor accuracy (Adjusted R 2 = 0.18) and high bias. Afterwards, the effect of the predicted E* from the NCHRP 1-40D model on the AASHTOWare Pavement ME predicted pavement performance in terms of rutting, cracking, and roughness was further studied. Accordingly, twenty-four simulation runs for typical Egyptian design cases were conducted using, first, the laboratory measured E* values and, then, the NCHRP 1-40D predicted E* values. The results showed that the NCHRP 1-40D predictions had no significant effect on the pavement performance predicted by the AASHTOWare Pavement ME with R 2 of the different pavement distresses ranged from 0.980, for the AC rutting, to 0.9996 for the International Roughness Index (IRI). Hence, the NCHRP 1-40D model can be used satisfactorily to predict E* for the Egyptian HMA mixes without compromising the structural pavement design.
Keywords: AASHTOWare Implementation; dynamic modulus; prediction models; pavement performance; mechanistic-empirical approach; flexible pavement (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/18/14030/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/18/14030/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:18:p:14030-:d:1245056
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().