EconPapers    
Economics at your fingertips  
 

Opuntia ficus-indica (L.) Mill. and Opuntia stricta (Haw.) Haw. Mucilage-Based Painting Binders for Conservation of Cultural Heritage

Giulia D’Agostino, Rosalia Merra, Natale Badalamenti (), Giuseppe Lazzara, Maurizio Bruno and Francesco Sottile
Additional contact information
Giulia D’Agostino: Physics and Chemistry Department (DiFC), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
Rosalia Merra: Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
Natale Badalamenti: Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
Giuseppe Lazzara: Physics and Chemistry Department (DiFC), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
Maurizio Bruno: Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
Francesco Sottile: Centro Interdipartimentale di Ricerca “Riutilizzo Bio-Based Degli Scarti da Matrici Agroalimentari” (RIVIVE), Università degli Sudi di Palermo, 90128 Palermo, Italy

Sustainability, 2023, vol. 15, issue 19, 1-14

Abstract: The possibility of using materials from the waste of agricultural products for the conservation of cultural and artistic heritage has led to important technological developments on mortars, plasters, colors, and other applications. In this experimental work, we investigated the binding properties of mucilage obtained from two different species of the genus Opuntia , both collected in Sicily, Italy: Opuntia ficus-indica (L.) Mill. and Opuntia stricta (Haw.) Haw. Through chemical acid hydrolysis, and subsequent spectroscopic analysis conducted at 13 C-NMR, the main monosaccharide composition of both mucilage was studied, identifying considerable compositional differences. In fact, the mucilage of O. ficus indica had similar total amounts of arabinose (23.65%), galactose (20.87%), and glucose isomers (23.89%), while that of O. stricta was characterized by significant amounts of arabinose (36.48%) and galactose (32.31%) units. The samples were obtained by dispersing pigments on the mucilage and applying the obtained tempera by a brush onto both paper and chalk supports, in order to observe if the colors changed with different substrates. Colorimetric analysis, measuring ΔE, showed how the same pigment modifies its aspect depending on the binder used. After a two-week UV ageing process, pigments that had dispersed in O. stricta changed their aspect more than those dispersed in O. ficus-indica . Overall, it is also evident how ΔE data for organic pigments are higher than those for inorganic ones.

Keywords: mucilage; NMR; by-products; pigments; historical artistic artifacts; tempera (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/19/14487/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/19/14487/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:19:p:14487-:d:1253647

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14487-:d:1253647