EconPapers    
Economics at your fingertips  
 

The Association between Meteorological Drought and the State of the Groundwater Level in Bursa, Turkey

Babak Vaheddoost, Babak Mohammadi () and Mir Jafar Sadegh Safari
Additional contact information
Babak Vaheddoost: Department of Civil Engineering, Bursa Technical University, Bursa 16310, Turkey
Babak Mohammadi: Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
Mir Jafar Sadegh Safari: Department of Civil Engineering, Yasar University, Izmir 35100, Turkey

Sustainability, 2023, vol. 15, issue 21, 1-17

Abstract: This study addressed the intricate interplay between meteorological droughts and groundwater level fluctuations in the vicinity of Mount Uludag in Bursa, Turkey. To achieve this, an exhaustive analysis encompassing monthly precipitation records and groundwater level data sourced from three meteorological stations and eight groundwater observation points spanning the period from 2007 to 2018 was performed. Subsequently, this study employed the Standard Precipitation Index (SPI) and Standard Groundwater Level (SGL) metrics, meticulously calculating the temporal extents of drought events for each respective time series. Following this, a judicious application of both the Thiessen and Support Vector Machine (SVM) methodologies was undertaken to ascertain the optimal groundwater observation wells and their corresponding SGL durations, aligning them with SPI durations tied to the selected meteorological stations. The SVM technique, in particular, excelled in the identification of the most pertinent observation wells. Additionally, the Elman Neural Network (ENN) and its optimized version through the Firefly Algorithm (ENN-FA), demonstrated their prowess in accurately predicting SPI durations based on SGL durations. The results were favorable, as evidenced by the commendable performance metrics of the Normalized Root Mean Square Error (NRMSE), the Nash–Sutcliffe Efficiency (NSE), the product of the coefficient of determination and the slope of the regression line (bR 2 ), and the Kling–Gupta Efficiency (KGE). Consequently, the favorable simulation results were construed as evidence supporting the presence of a discernible association between SGL and the duration of the SPI. As we substantiate the concordance between the temporal extent of meteorological droughts and the perturbations in groundwater levels, this unmistakably underscores the fact that the historical fluctuations in groundwater levels within the region were predominantly attributable to climatic influences, rather than being instigated by anthropogenic activities. Nevertheless, it is imperative to underscore that this revelation should not be misconstrued as an endorsement of future heedless exploitation of groundwater resources.

Keywords: drought duration; Elman neural network; firefly algorithm; groundwater level; support vector machine (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/21/15675/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/21/15675/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:21:p:15675-:d:1275139

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15675-:d:1275139