A Review of the Direct Measurement of Total OH Reactivity: Ambient Air and Vehicular Emission
Xinping Yang ()
Additional contact information
Xinping Yang: State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Sustainability, 2023, vol. 15, issue 23, 1-19
Abstract:
Total OH reactivity, an index utilized to evaluate the overall effect of atmospheric reactive species on hydroxyl radicals, has been assessed over the past half century, particularly in ambient air. The direct measurement of OH reactivity for vehicular sources has also been conducted, further enhancing our understanding of chemical compounds and processes in source emissions. However, the current summary on OH reactivity dominantly focuses on ambient, and the review of OH reactivity measurements and characteristics for vehicular sources was lacking. Herein, we comprehensively reviewed and compared the measurement techniques, values of total OH reactivity, reactive chemical species, and missing OH reactivity for ambient air and vehicular sources involving exhaust and evaporation. The OH reactivity values for ambient air are comparable to those for evaporative emission (around 0–10 2 s −1 ), whereas they are all lower by 2–3 orders of magnitude than exhaust emission. In areas dominated by anthropogenic emissions, inorganic reactivity dominates the OH reactivity, while in biogenic-dominated areas, organic reactivity is the main contributor. For vehicular sources, inorganic reactivity dominates the calculated OH reactivity for exhaust emissions, while volatile organic compound reactivity (especially alkene reactivity) can almost explain all the calculated OH reactivity for evaporative emissions. The missing reactivity for ambient air and vehicular emission might derive from unmeasured, even unknown, organic species. We finally discussed possible new directions for future studies of total OH reactivity.
Keywords: OH reactivity; reactive chemical species; missing source; ambient air; vehicular source (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/23/16246/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/23/16246/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:23:p:16246-:d:1286453
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().