EconPapers    
Economics at your fingertips  
 

Phytoremediation Potential of Sorghum as a Bioenergy Crop in Pb-Amendment Soil

Hanan E. Osman (), Ruwaydah S. Fadhlallah, Wael M. Alamoudi, Ebrahem M. Eid and Ahmed A. Abdelhafez
Additional contact information
Hanan E. Osman: Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Mecca 24382, Saudi Arabia
Ruwaydah S. Fadhlallah: Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Mecca 24382, Saudi Arabia
Wael M. Alamoudi: Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Mecca 24382, Saudi Arabia
Ebrahem M. Eid: Biology Department, College of Science, King Khalid University, Abha 61321, Saudi Arabia
Ahmed A. Abdelhafez: Department of Soils and Water, Faculty of Agriculture, New Valley University, Kharga Oasis 72511, Egypt

Sustainability, 2023, vol. 15, issue 3, 1-16

Abstract: Lead contamination is among the most significant threats to the environment. The phytoextraction approach uses plants that can tolerate and accumulate metals in their tissues. Lately, biofuel plants have been recommended to be suitable for remediation and implementation of potentially toxic elements (PTEs)-polluted soil. This research assessed the Pb phytoremediation potential of three Sorghum bicolor [red cultivar (S1), white cultivar (S2) and shahla cultivar (S3)]. A pot experiment with five treatments (0, 100, 200, 400 and 800 mg Pb/kg soil) was carried out to assess the potential possibility of using these cultivars to remediate the soil of Pb. The potential possibility of using these plants to phytoremediate the soil of Pb was also assessed. The results emphasized that all the examined cultivars could attain growth to maturity in high Pb spiked soil. However, Pb influenced morphological and chlorophyll contents, especially in plants grown in soil amended with 800 mg/kg. The S1 cultivar had the most significant reduction in total chlorophyll with an average of 72%, followed by the S2 and S3 cultivars (65% and 58% reduction, respectively). The highest Pb content in root (110.0, 177.6 and 198.9 mg/kg, respectively) and in-plant shoot (83.9, 103.6 and 99.0 mg/kg, respectively) were detected by sorghum (S1, S2 and S3, respectively) grown in soil enriched by 800 mg/kg of Pb. From the calculated results of the contamination indices, contamination factor (CF), translocation factor (TF), plant uptake (UT) and tolerance index (TI), none of the investigated cultivars were considered Pb hyperaccumulators, but all were identified as particularly ideal for phytostabilization.

Keywords: sorghum; lead; phytoremediation; tolerance index; bioenergy crop; prediction modeling (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/3/2178/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/3/2178/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:3:p:2178-:d:1045565

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2178-:d:1045565