A Hybrid Multi-Criteria Decision Support System for Selecting the Most Sustainable Structural Material for a Multistory Building Construction
Mohammad Masfiqul Alam Bhuiyan () and
Ahmed Hammad
Additional contact information
Mohammad Masfiqul Alam Bhuiyan: Construction Engineering and Management, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
Ahmed Hammad: Construction Engineering and Management, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
Sustainability, 2023, vol. 15, issue 4, 1-36
Abstract:
In recent years, the performance of the construction industry has highlighted the increased need for better resource efficiency, improved productivity, less waste, and increased value through sustainable construction practices. The core concept of sustainable construction is to maximize value and minimize harm by achieving a balance between social, economic, technical, and environmental aspects, commonly known as the pillars of sustainability. The decision regarding which structural material to select for any construction project is traditionally made based on technical and economic considerations with little or no attention paid to social and environmental aspects. Furthermore, the majority of the available literature on the subject considered three sustainability pillars (i.e., environmental, social, and economic), ignoring the influence of technical aspects for overall sustainability assessment. Industry experts have also noted an unfulfilled need for a multi-criteria decision-making (MCDM) technique that can integrate all stakeholders’ (project owner, designer, and constructor) opinions into the selection process. Hence, this research developed a decision support system (DSS) involving MCDM techniques to aid in selecting the most sustainable structural material, considering the four pillars of sustainability in the integrated project delivery (IPD) framework. A hybrid MCDM method combining AHP, TOPSIS, and VIKOR in a fuzzy environment was used to develop the DSS. A hypothetical eight-story building was considered for a case study to validate the developed DSS. The result shows that user preferences highly govern the final ranking of the alternative options of structural materials. Timber was chosen as the most sustainable option once the stakeholders assigned balanced importance to all factors of sustainable construction practices. The developed DSS was designed to be generic, can be used by any group of industry practitioners, and is expected to enhance objectivity and consistency of the decision-making process as a step towards achieving sustainable construction.
Keywords: sustainability; sustainable construction; multi-criteria decision-making; decision support system; building construction (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/4/3128/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/4/3128/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:4:p:3128-:d:1062285
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().