EconPapers    
Economics at your fingertips  
 

Comparisons on the Local Impact Response of Sandwich Panels with In-Plane and Out-Of-Plane Honeycomb Cores

Jiefu Liu, Genda Wang and Ziping Lei ()
Additional contact information
Jiefu Liu: School of Traffic & Transportation Engineering, Central South University, Changsha 410000, China
Genda Wang: School of Traffic & Transportation Engineering, Central South University, Changsha 410000, China
Ziping Lei: School of Traffic & Transportation Engineering, Central South University, Changsha 410000, China

Sustainability, 2023, vol. 15, issue 4, 1-17

Abstract: The influence of in-plane and out-of-plane element array effects of honeycomb on the impact characteristics of sandwich panels was studied under different local impact speeds. The numerical model is calibrated by air cannon impact experiment and used to conduct the investigations. It is demonstrated that the sandwich panel with in-plane honeycomb core (SPIH) exhibits a response mode with larger local indentation and smaller overall deflection, and also shows superior energy absorption as compared to the sandwich panel with out-of-plane honeycomb core (SPOH). When facing more severe impact conditions, SPIH shows better anti-penetration capability. When the impact radius is 20 mm and the impact velocity is 83 m/s, the SHOP is penetrated while the SHIP is not. When the impact radius is 20 mm and the impact velocity is 100 m/s, the total absorbed energy of SHIP is 59.79% higher than that of SPOH, and the impact residual velocity is 32.67% lower. Furthermore, the impact mitigation performances of SPIH with different density gradient cores are investigated by comparing their deformation modes and energy absorption characteristics. The results indicate that different gradient schemes enable sandwich panels to perform multiple functions. The positive gradient design in the cell stretching direction is beneficial to reduce the overall deflection and improve the energy absorption effect.

Keywords: sandwich panel; cell array honeycomb; projectile impact; impact resistance (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/4/3437/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/4/3437/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:4:p:3437-:d:1067213

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3437-:d:1067213