EconPapers    
Economics at your fingertips  
 

Optimizing the Performance of Commercial Demand Response Aggregator Using the Risk-Averse Function of Information-Gap Decision Theory

Ghasem Ansari and Reza Keypour ()
Additional contact information
Ghasem Ansari: Faculty of Electrical and Computer Engineering, Semnan-University, Semnan 35131-19111, Iran
Reza Keypour: Faculty of Electrical and Computer Engineering, Semnan-University, Semnan 35131-19111, Iran

Sustainability, 2023, vol. 15, issue 7, 1-31

Abstract: Power systems face challenges with regard to handling the high penetration of renewable energies, including energy intermittency and fluctuations, which are not present in conventional electricity systems. Various flexibility models have been developed to address these fluctuations, including demand-side flexibility, which offers a practical solution with which to overcome these challenges in all demand sectors, including the commercial sector. This paper proposes a new structure for the participation of the commercial sector in the electricity market to integrate and coordinate the consumption of the commercial sector. Unlike previous studies that had commercial consumers participate in the electricity market individually and sometimes fail to meet the requirements for flexibility programs, this study adopts a commercial aggregator to enhance the responsiveness of commercial systems. The proposed structure includes a mathematical model for commercial systems, e.g., shopping centers, with responsive ventilation systems to achieve demand flexibility. The study also uses the information-gap decision theory to address time-based commercial demand response planning from 24 h ahead to near real time. Moreover, a multi-layered structure is proposed to integrate the flexibility of shopping centers from the demand side to the supply side through a newly invented commercial demand response aggregator. The proposed approach was implemented in the New York electricity market, and the results show that it provides demand flexibility for up to 18% of the nominal level of electricity consumption compared to the traditional system. The paper aims to present a responsive structure for commercial systems, addressing the challenges of integrating renewable energies with the electricity system.

Keywords: renewable energy; demand response; flexibility; demand response aggregator; information-gap decision theory (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/7/6243/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/7/6243/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:7:p:6243-:d:1116446

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6243-:d:1116446