EconPapers    
Economics at your fingertips  
 

SmartISM 2.0: A Roadmap and System to Implement Fuzzy ISM and Fuzzy MICMAC

Naim Ahmad ()
Additional contact information
Naim Ahmad: Department of Informatics and Computer Systems, College of Computer Science, King Khalid University, Abha 62529, Saudi Arabia

Sustainability, 2024, vol. 16, issue 20, 1-22

Abstract: Interpretive structural modeling (ISM) is a widely used technique to establish hierarchical relationships among a set of variables in diverse domains, including sustainability. This technique is generally coupled with MICMAC (Matrice d’Impacts Croisés Multiplication Appliquée á un Classement (cross-impact matrix multiplication applied to classification)) to classify variables in four clusters, although the manual application of the technique is complex and prone to error. In one of the previous works, a novel concept of reduced conical matrix was introduced, and the SmartISM software was developed for the user-friendly implementation of ISM and MICMAC. The web-based SmartISM software has been used more than 48,123 times in 87 countries to generate ISM models and MICMAC diagrams. This work attempts to identify existing approaches to fuzzy ISM and fuzzy MICMAC and upscale the SmartISM to incorporate fuzzy approaches. The fuzzy set theory proposed by Zadeh 1965 and Goguen 1969 helps the decision makers to provide their input with the consideration of vagueness in the real environment. The systematic review of 32 studies identified five significant approaches that have used different linguistic scales, fuzzy numbers, and defuzzification methods. Further, the approaches have differences in either using single or double defuzzification, and the aggregation of inputs of decision makers either before or after defuzzification, as well as the incorporation of transitivity either before or after defuzzification. A roadmap was devised to aggregate and generalize different approaches. Further, two of the identified approaches have been implemented in SmartISM 2.0 and the results have been reported. Finally, the comparative analysis of different approaches using SmartISM 2.0 in the area of digital transformation shows that, with a wide flexibility of fuzzy scales, the results converge and improve the confidence in the final model. The roadmap and SmartISM 2.0 will help in the implementation of fuzzy ISM and fuzzy MICMAC in a more robust and informed way.

Keywords: fuzzy interpretive structural modeling (fuzzy ISM); SmartISM 2.0; fuzzy MICMAC; fuzzy set theory; linguistic scale; fuzzy numbers; defuzzification; aggregation of decision makers’ input; digital transformation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/20/8873/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/20/8873/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:20:p:8873-:d:1497921

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:8873-:d:1497921