EconPapers    
Economics at your fingertips  
 

Sustainable Utilization of Waste Pumice Powder in Slag-Based Geopolymer Concretes: Fresh and Mechanical Properties

Zrar Safari (), Khaleel H. Younis and Ibtisam Kamal
Additional contact information
Zrar Safari: Department of Civil and Environmental Engineering, Faculty of Engineering, Soran University, Soran 44008, Kurdistan Region, Iraq
Khaleel H. Younis: Road Construction Department, Erbil Technology College, Erbil Polytechnic University, Erbil 44001, Kurdistan Region, Iraq
Ibtisam Kamal: Department of Chemical Engineering, Faculty of Engineering, Soran University, Soran 44008, Kurdistan Region, Iraq

Sustainability, 2024, vol. 16, issue 21, 1-24

Abstract: In societies worldwide, there is significant pressure on the construction industry to employ waste/recycled materials instead of natural-sourced materials to develop infrastructures to mitigate negative environmental consequences. This study investigated the feasibility of using waste pumice powder as a binder in place of granular blast-furnace slag to manufacture geopolymer concrete. Three sets of GC mixes were developed with three ratios of alkaline activator/binder (A/B) of 0.45, 0.5, and 0.55. Eight GC mixes were prepared for each set, with eight replacement ratios of GGBFS with WPP (0%, 30%, 50%, 60%, 70%, 80%, 90%, and 100%). The influence of WPP addition as a substitute source of aluminosilicate precursors on the fresh (workability and setting time), mechanical (compressive strength and flexural strength), physical characteristics (density and water absorption), and microstructure morphology of WPP/slag-based geopolymers were studied. A linear correlation between UPV and compressive strength was found. The results revealed that setting times and workability are affected by the A/B ratio and content of WPP. WPP reduces the workability and increases setting time (both initial and final). There was a drop in compressive and flexural strengths as the percentage of WPP in the GC increased. The maximum compressive (60 MPa) and flexural strength (4.96 MPa) at an A/B ratio of 0.45 for a 100% slag content mix were obtained. However, a GC mix containing 50% WPP and 50% slag with a compressive strength of 28 MPa after 28 days of curing at ambient temperature was achieved, which is acceptable for structural applications.

Keywords: alkali activator; geopolymer; GGBFS; waste pumice powder (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/21/9296/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/21/9296/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:21:p:9296-:d:1506896

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9296-:d:1506896