EconPapers    
Economics at your fingertips  
 

Scoring and Ranking Methods for Evaluating the Techno-Economic Competitiveness of Hydrogen Production Technologies

Yehia F. Khalil ()
Additional contact information
Yehia F. Khalil: Chemical and Environmental Engineering Department, Yale University, New Haven, CT 06520, USA

Sustainability, 2025, vol. 17, issue 13, 1-24

Abstract: This research evaluates four hydrogen (H 2 ) production technologies via water electrolysis (WE): alkaline water electrolysis (AWE), proton exchange membrane electrolysis (PEME), anion exchange membrane electrolysis (AEME), and solid oxide electrolysis (SOE). Two scoring and ranking methods, the MACBETH method and the Pugh decision matrix, are utilized for this evaluation. The scoring process employs nine decision criteria: capital expenditure (CAPEX), operating expenditure (OPEX), operating efficiency (SOE), startup time (SuT), environmental impact (EI), technology readiness level (TRL), maintenance requirements (MRs), supply chain challenges (SCCs), and levelized cost of H 2 (LCOH). The MACBETH method involves pairwise technology comparisons for each decision criterion using seven qualitative judgment categories, which are converted into quantitative scores via M-MACBETH software (Version 3.2.0). The Pugh decision matrix benchmarks WE technologies using a baseline technology—SMR with CCS—and a three-point scoring scale (0 for the baseline, +1 for better, −1 for worse). Results from both methods indicate AWE as the leading H 2 production technology, which is followed by AEME, PEME, and SOE. AWE excels due to its lowest CAPEX and OPEX, highest TRL, and optimal operational efficiency (at ≈7 bars of pressure), which minimizes LCOH. AEME demonstrates balanced performance across the criteria. While PEME shows advantages in some areas, it requires improvements in others. SOE has the most areas needing enhancement. These insights can direct future R&D efforts toward the most promising H 2 production technologies to achieve the net-zero goal.

Keywords: scoring and ranking; water electrolysis (WE); decision criteria; hydrogen production; technology maturity; renewable electricity (RE) (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/13/5770/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/13/5770/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:13:p:5770-:d:1685390

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-24
Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5770-:d:1685390